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In pursuit of the study begun in the preceding paper of the spontaneous emission of a
Wigner—-Weisskopf atom in a one-dimensional radiation field, the exact solution of this problem in
the thermodynamic limit of a system of infinite extent is examined. The analysis reveals the existence
in general of three contributions to the probability of the atom’s being excited at any moment: a
constant contribution and two sorts of time-dependent ones, exponential and nonexponential. For a
specific choice of coupling function, this probability is written down in closed form. The link
between the constant contribution and the appearance of ghost states and ergodicity is investigated,
and criteria given to determine when this contribution does not arise. A numerical study is made of
the expressions obtained, and the nonexponential part of the solution compared with approximations
for it which have been previously obtained by various means. It is concluded that the predictions of
the weak-coupling Prigogine—Résibois master equation are inadequate except when the model is
ergodic in a certain sense, and some suggestions are made concerning the relevance of these studies

to nonequilibrium statistical mechanics.

I. INTRODUCTION

This paper is a sequel to the preceding one (hereafter
called IV) and to three previous papers of the authors.!
A study is undertaken of the properties of an exact so-
lution of the problem of the spontaneous emission of a
Wigner -Weisskopf two-level atom in interaction with a
one-dimensional radiation field, in the limit where the
size of the system becomes infinite. This exact solu-
tion was obtained in III, where it was investigated for
both finite and infinite systems in the limit of weak
coupling between the atom and the field. Then,in IV,
finite systems were again examined, without any ap-
proximation of weak coupling, and it was found that the
exact solution and the approximate solution of III were
indeed very similar for small couplings, and for all but
the smallest systems. This was in contrast to another
weak-coupling approach elaborated in II, and based on
the Prigogine—Résibois master equation for the diagonal
elements of the density matrix. This approach yielded
an approximate solution of a different analytic form
from those of III and IV,and which accorded with neither
in a numerical comparison. Both weak-coupling treat-
ments, however, led to the same result in the thermo-
dynamic limit of an infinite system, namely,a simple
exponential decay. But even in this limit, it was seen in
I that the solution of the master equation contained non-
exponential terms when one considered anything more
than the lowest order in the coupling. It is therefore of
interest to see if the exact solution for an infinite sys-
tem manifests this property,and if so,to compare the
nonexponential part of it with that found in I.

In order to treat the problem of spontaneous emission
of the two-level atom, it has been seen to be sufficient
to consider a Hilbert space spanned by the state vectors

9ty and {IN},

where |J) denotes the state with the atom excited and
the radiation field completely de-excited,and |A) that
with the atom de-excited and one photon excited in the
Ath mode of the field. The index A labels the modes of
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thefield, theproperties of which are to be determined by
the geometry of the system,i.e.,its size and dimension-
ality. The Hamiltonian can be written [see Eq.(IV-5)]

H =FEE |3} + 25 Fw, M|
A
+§ [, V2 IO+ r3V2 900 ], (1)

where %ZE is the energy separating the two levels of the
atom, 7w, is the energy of a photon in the Ath mode, and
h, is a (possibly complex) coupling parameter. Now, if
the system is in the state |M) at time f = 0, it has been
shown that the probability amplitude for finding the state
[90) at time ¢ is given by (see Eq. [III-12)]

_ 2|h)\|2 -1
? Kz — w)\)> ’
(2)

(C is a contour above the real axis and parallel to it.)
This result, in the form of an inverse Laplace transform
integral, was obtained directly by solving the Schrddinger
equation for the problem. This form is particularly con-
venient for present purposes, since to proceed to the in-
finite system limit, it is sufficient to replace the quantity

Z)(Z)E? (2] h,]12/02(z — w,)] (3)
by its limit when the spectrum of energies 7iw, becomes
continuous. For a one-dimensional system of length L,
with periodic boundary conditions, the w, are given by

b e(T) =-% f;_ dze izt <z —E

w, = 27|nle/L, (4)
where the nonzero integers »n replace A as the label.
Finally, ¢ is the velocity of light. As was discussed in
the previous papers, it is best, with this choice of the Wy,
to take the couplings as [see Eq. (IV-2)]

|hy|2 = B2acE1 Y/ Laf (0<p <1), (8)
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where o is a dimensionless coupling constant,which cor-
responds,for a one-dimensional system to the fine-
structure constant of quantum electrodynamics. This
choice of |k, |2 avoids difficulties associated with the
infrared and ultraviolet divergences. With the specifi-
cations of Egs. (4) and (5), Eq. (3) becomes

2(z) =2 OZO) 2acE>P 1

n=1 L(2mnc/L)? z — (2mnc/L) ®)

and as L —» «,this goes over to an integral:
2 © 1
Zz) == aEl*? dk * ——
7@ 7 J k?(z — k)
= —2aEl*vz veitm ecge(pw)

(M

for 0 < argz < m,as in Eq.(2). For the calculation of
Eq.(2),it is convenient to employ dimensionless vari-
ables, and we shall define these as follows:

7 = aFEt, ¢ =z/0E,

making use of the scaling by @ which was found neces-
sary to make a weak-coupling scheme meaningful. Then,
with the further definition

o(&) = (1/aE) 25 (2) = (1/aE) 25 (@E¥),

Eq.(2) becomes

(8)

1

@) == 3

faen(s-L-o @)’ ©

with
0 (£) = —zeirT csc(pm)(ag)?.

This result, Eq. (9), will be the principal object of study
in the remainder of the paper. It was shown in III that in
the limit a = 0 it leads to the result that the probability
of finding the state |91) at time 7 is

p(1) = ([ E(T) |2 = e747, (10)

the simple exponential decay mentioned earlier.

As soon as one tries to go beyond this approximation, it
is found that corrections to Eq.(10) are nonanalytic in

a. This was the main conclusion of I, and the same phen-
omenon was pointed out in III for an infinite system.
Nonanalyticity in o is also a feature even of the weak-
coupling solution for a finite system, and this matter has
been extensively discussed in I, II, and IV. Mazur and

¢ PLANE

FIG.1. The contour used in the study of Eq.(9) for 0 <p < 1.
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Siskens? have argued convincingly that nonanalyticity
with respect to the coupling constant of the constants of
motion is linked closely with the appearance of ergodic
properties in the thermodynamic limit. Such nonanalyti-
city will also appear in the matrix elements of the trans-
formation which diagonalizes the Hamiltonian [for our
system these are displayed in Eq.(IV-12)],and a connec-
tion has been made by Cukier and Mazur3 between the
appearance of this phenomenon and of ergodicity of cer-
tain phase functions simultaneously in the thermodyna-
mic limit. In their work,they considered a system which,
like ours, is not a completely ergodic system even in
this limit, but for which certain dynamical variables
possess an ergodic property that may be studied by means
of some bounds on time-averaged autocorrelation func-
tions derived by Mazur.4 In view of the formal similar-
ities between our model and that of Cukier and Mazur, it
is interesting to see whether the same kind of link can
be made connecting the nonanalyticity of our model with
ergodicity of the probability p(7) for the state |}, since,
if this quantity decays, by whatever means,to zero as

7 © in the thermodynamic limit, then it will be ergodic.

In the next section,the properties of Eq.(9) will be ex-
amined as a function of the time, 7,and then in Sec.III,
for the particular choice p = 3 of the exponent in Eq. (5),
the contour integral will be explicitly calculated in clo-
sed form, and its properties studied. The matter of ergo-
dicity will be considered in Sec.IV,and criteria will be
established for its occurrence. A numerical evaluation
of p(7) is reported in Sec. V,along with a comparison of
this exact result with the nonexponential contributions to
p(7) which arise from the approximate master equation
treatment presented in I. Finally,there is some discus-
sion of the results of this paper in Sec. VI and of their
relevance to the statistical mechanical theory of non-
equilibrium processes.

1. THE CONTOUR INTEGRAL

For the evaluation of the integral in Eq.(9),it is neces-
sary to examine the singularities of the integrand:

e ie7[t — (1/a) + 2¢ir7 cse(pm)(ag) 2] L. (11)
The exponential factor here enables one to close the in-
tegration contour C by a large semicircle in the lower
half-plane of £ which will not contribute to the integral.
Provision must be made by a cut for the branch point at
¢ = 0 caused by the occurrence of (a£)™? in the second
factor. Since it is then clear that the only other singula-
rities of the expression (11) within the closed contour
are poles, consideration of the contour of Fig.1 will al-
low the integral to be evaluated by Cauchy's theorem.
The poles are located at the zeros of the expression

(&) = £ —1/a + 2eit7csc(pm)(at)?.

This expression itself has no poles in the finite part of
the plane,and so its zeros can be unambiguously located
by use of the principle of the argument. It can readily
be seen that the variation of the argument of ¢(£) around
a contour,described in the positive sense, enclosing that
part of the lower half-plane below the cut,is 27. There
is consequently a simple zero at ¢ = £, say,in this re-
gion. Similarly one finds that there is no zero in the
upper half-plane. On the positive real axis,the imagin-
ary part of ¢(¢) is 2(a£)"?,which does not vanish. But
on the negative real axis,the expression is purely real.
Its value tends to +®w as £ » 0,and to —w as { > — «,
and its derivative is always positive in this interval.
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There is consequently one further simple zero on the
negative real axis at £ = {,, say.

The location of the zero, £, , can be determined as a
power series in a. If one solves the equation ¢(£) =0
by Newton's method, using as the first approximant £, =
1/a,then there results

£, =(1/a) — 2w — 4pw2a — 403p(3p + 1)a? + 0(a3),
(12)
where we have written for convenience

w = eiPT cscpm = cotpw + i.

It is seen at once that,for small o at least, the series,
Eq.(12), converges to the zero £, and not to any other
zero of ¢(¢). Further,for small o, £, is in the right-
hand quadrant of the lower half-plane. This implies that
the cut in Fig.1 may be displaced to lie along the imagin-
ary axis. Since for negative &, ¢(£) is purely real,and
since it has no zeros in the upper half-plane,the prin-
ciple of reflection ensures that no zero is uncovered in
the lower left-hand quadrant by this shift of the cut. As
regards £,, Newton's method can again be employed to
give a series solution for it. Let us rearrange the equa-
tion ¢(£) = O for negative & by putting

—af =7,
to yield
¥ =Bl +7) /s,

(2a cscpm)l/p =8

With first approximant » ; = 8,the series solution is

r =8 —(1/p)B2 + [(p + 3)/2p2]83 + 0(Y),
that is,

£, =—(1/a){g — (1/p)p2 + [(p + 3)/2p2]83 + 6(8)}.

Again, it is evident that for small enough «,this con-
verges suitably. There,too,we may see the appearance,
through B, of a nonanalyticity in a at @ = 0, except for
the case 1/p = integer.

The residues of the integrand (11} at the two poles £, and
£, are readily obtained in terms of the locations of these
poles. Since each pole is simple,the residues take the
form:
-ig 7| 0 -1
Res(¢ = ¢) =¢ | 55 {o(0)}
£%¢;
!
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FIG.2. The contour used in accounting for the contribution from the
cut, See the discussion prefacing Eq.(14).

_ e-iéiT[l — 2pwalat,)P1}L. (13)
If Eq.(13) is expanded out in powers of « for the residue
at £,,by using Eq.(12), one obtains

exp(iT)[{1/a) — 2 cotpm + O(a)] exp(—27)
x {1 + 2pwa+ 4p(2p + Nw2a? + 0(ad)},

whence it is clear that the weak-coupling limit, Eq.(10),
of p(7),which involves no nonanalyticity in @, comes in its
entirety from this residue.

When Cauchy's theorem is applied to calculate the integral
of Eq.(9),in addition to the two residues given by Eq.(13),
account must be taken of the contribution from the cut.
This is most simply done using the contour of Fig.2. The
result is

_51172 J; a e(;(l; = Res(¢ = §,) + Res(£ = £,)
1 i g7IET ciw . @ iET
_1 _ p ’
o (0™ 8 g~ o s som) 09

where ¢tr)(£) is the value assumed by @(&) for £ on the
right-hand side of the cut and ¢®@(¢) for the left-hand
side. A little rearrangement of the cut contribution yields
for it the explicit expression:

—1 + 2a cos(3p7/2) csc{pm)x? + ilx — 2a sin(3p7/2) cse(pmx=2]

% fooo dxe /e (

[—1 + 2a cos(3pn/2) csc(pm)x?]2 + fx — 2 sin(3p7/2) esc(pm)x?]2

—1 + 2a cos(pn/2) cse(pm)x? + i[x + 2a sin(pn/2) esc(pn)x?]

B [-1 + 2a cos(pn/2) esc(pmx?]2 + [x + 20 sin(pn/2) csc(pn)x‘P]‘!)' (15)

f

For general p,this contribution can be studied best by
numerical computation,but for the special casep = 3,
an explicit closed analytical form for Eq.(14) will be
derived in the next section,which will manifest most of
the interesting properties of the general case. It can
also be seen by use of the Tauberian theorems for in-
verse Laplace transforms (see,for example, Ref. 5) that
the asymptotic behavior of the expression (15) as 71—~ «©
will be proportional to 7-(1+£),

Hl. THE CASE p = 1/2

On settingp = 3 in Eq.(9), we obtain for the solution of
our problem
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1
£—(1/a) + 2i(ag)1/2

For the evaluation of this integral,a somewhat different
contour from that used in the last section will be con-
sidered. It is shown in Fig. 3, and its advantage is that
its cut contribution can readily be expressed in terms of
the error function. First of all,it is necessary to find
closed expressions for the poles £, and £p-

1 -1ET
QU () === [, dgeie

The equation
£—(1/a) + 2i(ag)1/2 = 0

can be reduced to a simple cubic by making the substi-
tution

y =—Haf)l/2, (16)
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FIG.3. The contour used in the study of Eq.(9) for the choicep = 3.

This yields the equation:

y3 +9y—20 =0. a7
To obtain the real root of this equation, one may set y =
u + v,and it can be seen that y will be this root if » and
v satisfy the equations

ud + v3 = 2a,

€O

Uuv = —g3,

that is, if #3 and v3 are the roots of the quadratic
Q2 —200—% = 0.
Hence,
y=utv=[a+(a2+h) Y213 + [a —(a2 + yi/2)1/3,
We shall define
(18)

91=u+1}, Gzzu—v

and then the left-hand side of Eq.(17) can be factorized
to yield the expression

(y— 0y + 5(6; +i0,V3)]y + 2(6; —i6,V3)]. (19)

From this result and Eq.(16) it is easily seen that the
poles £, and £, are given by

EP = —9%/0,
£, =—(1/40)(0, +10,V3)2 = (1/2a)(63 + 2 —i0,06,V3),

where, in the last equality,use has been made of the re-
lation

9%=9%+32’

which follows from the definitions (18). Further proper-
ties of 8, and ¢, which will be needed are

65 > 0, > 0.

It is clear from this that,withp = 3, ¢, is always in the
lower right-hand quadrant, whatever «.

We may now write down the two pole contributions to
(N|¥ (7)) at once from Eq.(13). They are

} Res(t = £,) = £’ 63/(63 + a),
Res( = £,) = exp[(i7/4a)(8; + i6,V3)2]
x{1 + [a/2(62 + 1)3K(262 + 3)6; — 6,V 3},
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Only a half of the residue at ¢, has been taken here of
course,because of the use of t‘fle contour of Fig. 3.
These two contributions can be put into a more con-
venient form by noticing that Egs. (18) can be inverted
to yield o in terms of 6;:

a = %91(9% + 1).

Some manipulation then gives,for the sum of the two
expressions,

(1/(362 + 1)]{62 exp(i627/0) + (202 + 1 + i6,/6,V3)

x exp[(it/4a)(6; +i6,V3)2)}.  (20)

There remains to be considered the cut contribution to
(9| ¥ (7)). This is the integral of the discontinuity of

[ — (1/a) + 2i(ag)"1/2]1
across the cut of Fig.3. It is easily seen to be

fo ax

(ag)l/zeigr
4—at( +1/a)2’

4
-—0
2%i

where the symbol ® denotes the Cauchy principal part.
The change of variable,

y = (@®)l/2,

analogous to Eq. (16), puts the integral into a tractable
form:

; 2 isz/Ot
fai g (@ gy V¢
1T 402 — y2(y2 +1)2
oo 2¢iy27/a . 2piy?r
=1—.<@f_w dy LETTE g [ gy PETR )
2w y3+y-—2a y3 +y+ 22
(21)
If we denote by I(«; 7) the integral
- iy2r/a
+@® [ ©d _evc
f°° Y y3 + 912
then 2 iy2
., d +o0 Y2ty T/
—ja — a,m)=+Q@ | dy ————
T (@3 7) f°° yy3+yi2a
and so the expression Eq. (21) is just
a d
;ﬁl(a,-r). (22)

The denominator y3 + y — 2a can be factorized as in Eq.
(19), and this factorization permits the evaluation of
I(ay7)to be reduced, by the decomposition of the inte-
grand into partial fractions,to the consideration of inte-
rals of the form

e **
x +a

® f_:o dx (a real).

This integral, which occurs in the theory of the plasma
dispersion function,® is related to the error function, and
its value is

— miea® erf(ia), (23)
where the erf function is defined as follows7:

_1)n32n+1
erfz = [ e-t%dt = 3 (—-—
fo 220 n!(2n + 1)
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For complex a,this result can be extended:

+, ‘X2
f_: dx £

P mie—a® [erf(ia) + 1] (Ima > 0) (24a)
= —mie~a® [erf(za) —1] (Ima < 0). (24b)

Now the decomposition into partial fractions is

1 1
+y—20 362 +1
X[ 1 _l<1+i91\/_3\ 1

y—0, = 8, /vy + 5(6, +i6,V3)

- %<1 B 192:_3) y+ %(911‘_ i92~/_3)]'

Next, by the use of Eqgs.(23) and (24) one obtains the re-

sults
© ’J’ 21/a . i6%1/a T\ 1/2 in/4
(Pf =nie '’ erf|{— 6,e

64 a
eisz/a

x [®d
f°° yy+%(91+i92w/_3)
=—i exp(i—Z(Ol + i92\/_3)2)

1/2 .
erf[(%) - 3(0; + iezﬁ)e“'/‘*} + 12

and
[*a ehr'rle — ui exp(L (6, — i6 J§)2)
o T I6, —i6,43) 4o 17 P72

x 3erf [(%)1/2 16,3 — ol)ein/4] + lg'

Thus it follows that

1 io2 1/2 i
=" [— e/ ors [<1> 9 e’ /4]
362 +1 o

i9;V3 ir .
— %(1 + —~§;-> exp(z’[~ (8, +i6,V3)2

I(Cle)

—1i6,/3)2

)
X erf[<£> 1/2%(91 + i92\/_3)ein/4:| + 1%
+ _;(1 - 102;/_5> exp(i—; (64 >

erf [(9 l/zé(iezﬁ - ol)ein/‘l} + 1“,

whence, since

d .2
dx erfx =e™*",
there results from Eq. (22)

. a9
cut contribution = — 37 1y 7)

= s (2 oo () ext[(D) " oy
\/3> expc—; (6, + iez\/—ﬁ)2>
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T\1/2 .
X erf[<—> 3(6, + iezﬁ)e”‘/‘l] + 1%
o
+ <292 +1 wl) <iT (6, —i8 JE)2>
- — (6, —i
. 6,v3) “P\aa T

erf[(i)llzé(iozx/_ii — 91)6""’4] +1 ] (25)

It is perhaps worthwhile to remark that when 7 is set
equal to zero in Eqs. (20) and (25), all the contributions
to (| ¥ (0)) add up to unity as they should. To see this,
one has that Eq. (20) gives

i

whereas Eq.(25) gives

oefs) = 57 )

9= 4)

1 i
— =262 +1 +
2(39§+1)[ ( ' RE

7)

The asymptotic behavior and limit of (3| ¥ (7)) as 7= ©
is of interest in determining the nature of the spontane-
ous emission of the excited atom. First of all,one can
see that of the two terms in Eq.(20), the first is a purely
oscillatory exponential which does not decay as 7 .
It will give rise to a constant contribution to the proba-
bility

p(7) = (¥ ()2

The second term has superimposed on its oscillatory
part an exponential decay governed by the factor

(392 +1) (

since erf(0) = 0.

exp[— (6, 8,V'3/2a)7},

to lowest order in a as can be seen by the definitions of
6; and 6,, Eq.{18);this factor is

e~2 T,

and is responsible, as remarked earlier, for the decay
which is found in the weak-coupling solution

o(1) = e™47,
The cut contribution is more complicated, and can best

be investigated by introducing the error function of com-
plex argument,? w(z), defined by the relation

w(z) = e#*[1 + erf(iz)].

This function has the asymptotic development, valid as
lz| » ©,— 7/4 < argz < 57/4:

i % 1-3°5...02m—1)
w(z) z«/?[ + 75 ] (26)

m=1 (2z2)m

Now, Eq.(25) may be rewritten as

s e () ~rf() e
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5 i9, T\1/2 ) .
— (2602 +1 — 92ﬁ>w[<;> 3(6; + zezﬁ)e-m/‘l]

9 1/2

2 a

Again, the first term in square brackets in this expres-
sion is a nondecaying purely oscillatory exponential,
equal to the term of this kind in Eq.(26). When the other
terms are expanded using Eq. (22), it can be seen that
the lowest order term, proportional to 71/2,has a van-
ishing coefficient, so that the asymptotic behavior comes
from the next terms, which are proportional to 7-3/2,in
accord with the remark at the end of Sec.II.

Lastly, in this section, we shall write out our solution
for (9| ¥ (7)) in a compact form suitable for the numeri-
cal calculations described in Sec. V. When Eqs. (20) and
(25) are grouped together, there results

_
2(362 + 1)

1627 T\V/2
X [26% exp(—) %erf[(——) Gle“‘/‘{l + 1‘
a !

+ (20{ +1+ ﬂ) exp(i—T(Ol + i92w/—§)2>
|

U () =

8,V 3 4o

X

 1/2
erf[— <—> 3(6; + i92«/—§)e”/4:| +1
a

+ <ze§ +1— 922?/1_3) exp(i—; (6, — iezﬁ)2>

erf[(i) 1/2%(—91 + iezﬁ)e“/{l + lﬂ
(27)

X

IV. CRITERIA FOR ERGODICITY

A somewhat surprising feature in the analysis of the
last two sections has been the appearance of the pole at
¢ = ¢, ,on the negative real axis, in the integrand, Eq.
(11). gI‘he residue from this pole gives rise,as we saw
in the last section,to a constant contribution to p(7),
which persists after all the other terms, proportional to
either a decaying exponential or to 7-(1*#) have become
arbitrarily small. The presence of this feature means
that, contrary to the burden of the remarks in Sec.I, p(7)
is not, in this model, an ergodic function, since, inasmuch
as the system we have considered is essentially at zero
temperature in the thermodynamic limit, the time aver-

age of
5 i _1_de
po=Um Z Jo 7o(7)

would be zero were the function ergodic. It is therefore
of interest to seek the origin of the pole at £ psand to de-
termine which property of our model prevents the ap-
pearance of an ergodic p(7). It should be remarked that
it is sufficient to study the function p(7) in this regard
in order to make a connection with the work of Mazur,4
where in a quantum-mechanical system, an observable,
to be ergodic, needs to have the appropriate property
for its associated operator. For it is clear from Eqs.
(IV.10,11) that if the probability amplitude (3| ¥ (7))
tends to zero as T—w, then so does (A| ¥ (7)) for all A, and
in consequence also the full density matrix of the sys-
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tem. Thus consideration of p(7) above is enough to en-
able one to decide if the Heisenberg operator |3} is
ergodic.

There are two clues to the problem. The first comes
from quantum field theory, and has to do with the occur-
rence of ghost states. It was remarked in I that the
model treated in these papers is closely related to the
Lee model of field theory, and may be considered as a
special case of it,with infinite-mass N and V particles.
(For a discussion of the Lee model and of ghost states
in it, see Refs.8 and 9.) Now the ghost state of the Lee
model is characterized as being a state of negative
energy which is needed to complete the Hilbert space of
the problem and which is associated with a negative
norm,that is, the probability associated with it, in the
expansion of a state of the system in terms of the com-
plete set of eigenstates of the Hamiltonian, is negative.
Negative probabilities cannot occur in our treatment of
course,because all that has been done is to go to the
limit of infinite size in a well-posed quantum—mechanical
problem [that is,as prescribed by the Hamiltonian Eq.
(1) and the boundary conditions] in which all probabili-
ties are nonnegative by construction. But,although the
ghost state,with negative norm, can only arise in an
approach based on interacting fields, with the conse-
quent complications of renormalization, both of mass
and charge, it is fairly clear that the same property of
the Hamiltonian is at work in producing such a state
and also in giving rise to our pole at £, . This remark
will be made more explicit below. Here, it can be noted
that in field theory, ghosts are related to particular
choices of the form factor for the interaction term in
the Hamiltonian. In our discussion,the “form factor” is
essentially the quantity [7,]|2.

The second clue is found in the work of Cukier and Ma-
zur ,3 who found that the dynamical variable that they
examined could be either ergodic or not depending on
the magnitude of the coupling constant in their problem.

When ergodicity failed, it was because, as here,a pole
separated from an otherwise continuous spectrum gave
rise to nondecaying contributions. In their work, how-
ever,which deals with an impurity atom in a harmonic
chain, the separated pole corresponds to a frequency
greater than that of the other modes of the system, ra-
ther than to a negative energy, and it is known from
solid state physics and lattice dynamics!0 that such
“isolated modes” do indeed occur.

That the pole at Ep in fact does correspond to a special
eigenstate of the Hamiltonian, an isolated mode of the
exact motion, can be seen by examining the eigenvalue
spectrum of the Hamiltonian for a finite system. This
has been studied in IV, where the nature of the roots of
the dimensionless secular equation [compare Egs. (8)
and (9)]

E—(1/a)—o(8) =0 (28)

was examined. It was found that the lowest root, §,, say,
was always less than the smallest one-photon (dimen-
sionless) energy of the unperturbed radiation field.
Since the derivative ¢’'(¢) is always negative,and since
o(£) has no poles for £ < 0 and tends to 0~ as £ — o, it
follows that £, will be negative if (and only if)

o(0) < —1/a. (29)
All other roots of Eq.(28) will of course always be posi-

tive. But if ¢(0) is looked at as a function of the length
L of the system [see Eq.(6)],then it is seen at once that
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0(0) > — 0 as L > ©. Thus above a critical length,de-
termined by

0'(0) =— l/a,

the quantity £, will be negative, and it is clear that £, is
simply the limit of £, as L = ©,being in fact a zero of

£E—(1/a) —o (8).

This analysis parallels that leading to the identification
of the ghost state in the Lee model.

With the “form factor” of our Hamiltonian given,as it
has been throughout this paper,by Eq.(5), it can now be
seen that the isolated pole £, is unavoidable, whatever o
may be, since aoo(O) = — o, and the condition, Eq.(29), is
always satisfied. But it is possible,as with the Lee mo-
del, to find other choices of |h )\I 2 which will remove the
difficulty, at least for sufficiently small a@. To achieve
this, it is necessary and sufficient that o _(0) be finite

(it is always negative and cannot vanish), and then for

a <-—-1/o_(0)

there will be no “ghost state.” If one tries the choice of
|n,|2 used in I and II,namely

|h\12 = K2acE/L, (30)
then o(&) will diverge unless the summation which de-
fines it, Eq. (6),is truncated at some upper bound for the

one-photon energies. Such a procedure would yield
[see Eq.(7)}:

o (&) =% I ap (5’;1—57

2 3
-5 loe(g=5)

with p as the (dimensionless) cutoff. But o _(0) is still
unbounded here, and, worse, the expression ¢ — (1/a) .
— ¢ _(£) has another isolated zero for £ > p, of the type
found by Cukier and Mazur. This is the case,too,for
another choice of |k, |2 mentioned in I [Eq. (I-11)]:

lh |2 =kacw,/L, (31)
where again a cutoff is needed for the convergence of
Eq.(6). For this choice,however,the “ghost state” pole
is removed, since o_(0) is now finite, as it is for any
|k, | 2 which behaves like a positive power of w, near

w, = 0. Thus no isolated pole will appear if |k )\I 2 has
this property for small w, and yet remains nonzero
(except perhaps at discrete points) for all finite w A An
example of such a |k, |2 may be cited, which has the

same value,%2acE/L,for w, = E as in Egs. (5),(30),and
(31). It is

f20cw,/L for
FE2acE3/2/Lwi/2

w,<E (32a)

2 _
[Bal —3 (32b)

for w, = E.

This choice yields

2o ¢ ( af ) 2

=—1 ——

98] m o8 at—1 T
1—at
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whence o_(0) = — 6/7,and so for a < 7/6,the absence of
isolated poles implies that the only contributions in Eq.
(9) to (| ¥ (7)) will be those from cuts and the pole
which corresponds to the £ of our analysis. In a sys-
tem with form factor given by Eq. (32), then, p(7) will
indeed be an ergodic function.

V. NUMERICAL CALCULATIONS

In order to have an idea of the relative importance of
the various contributions, discussed in the preceding
sections, to the probability po(7) of finding the two-level
atom excited at a time 7,a numerical investigation has
been performed based on Eq.(27). The real and imagin-
ary parts of (3| ¥ (1)) were separately calculated from
this equation, and from these results p(7) itself was ob-
tained. This function is plotted in Figs. 4 and 5 for the
choices @ = 0.1 and a = 0. 8, respectively; included in
these figures for comparison is the corresponding weak-
coupling solution obtained in Il [see Eq. (1. 27)], which,

0.8

0.6 h

pit) \

0.2} N

0.0 ' ==
0.0

3.0

FIG.4. A plot of p(7) versus 7for @ =0.1,p = 3. The solid line re-
presents the exact solution derived from Eq.(27),and the dashed line
represents the Schrddinger weak-coupling solution given by Eq. (33).

“ For clarity the horizontal scale has been expanded by a factor of two.”
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FIG.5. A plot of p(7) versus 7 for a = 0.8,p = . The solid line re-
presents the exact solution derived from Eq.(27),and the dashed line
represents the Schrédinger weak-coupling solution given by Eq.(33).

2
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for p = 3 ,assumes the following form:

p(7) = [e'zf +; I ag sin(—é—) (%

E) 1/2]2
+ [ae 2’—— fo dt cos< >( — g) 1/2j| . (33)

For small values of a,it is clear that the constant term
in p(7),arising from the “ghost state” is very small, and
the departure of p(7) from ergodicity cannot be seen in
the figure. On the other hand,for o = 0.8, this contri-
bution is significant and it can be seen that even over
the time range shown, it rapidly becomes dominant, It is
readily noted from Sec.III that the value of the contri-
bution is
20% \ 2
(3 6% + 1> ’ (34
that is,the square of the modulus of the full residue at
§ = §,. For o = 0.8,this quantity is 0. 22.

The most noticeable feature of both these plots, how-
ever, is the appearance of nonexponential decay, coming
from the cut integral in (3| ¥(7)). This phenomenon is

i

1 [
-5 b dt
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quite in agreement with the predictions of I, where,al-
though nothing like the constant term, Eq. (34), can be
found in the weak-coupling theory, nonexponential con-
tributions which are also nonanalytic in o at @ = 0 are
significant in p(7). It may be remarked in passing that
such nonanalyticity is evident in the exact solution of
this paper, Eq. (27), through the arguments of the error
functions, proportional to @ 1/2, In view of these com-~
ments, the purely exponential part of p(7),as calculated
from Eq.(27), namely

402 + 1)2

exp[—(8,6,V3/a ,
362 + 4 P (6,6,V3/a)1]
has been substracted from p(r),along with the constant
term, Eq. (34), so as to make a quantitative compar1son
with the predictions of I.

A different choice of form factor was made in I from that
used here. There, |,|2 was taken as given by Eq. (30),
and, moreover,no cutoff was found to be necessary in

the approximation scheme of that paper. So that a proper
numerical comparison might be effected, the form fac-
tor used here, Eq. (5), was put into the formulas of I, and
it follows easily that the nonexponential contribution to
p(7) as computed by those methods is

X (2 cos(1/E)[£P(§ + a) P + 282(a — £)°P cospm] + sin(1/EXEL + 2[£P(E + a)? cospr — tP(a — £)P cos2pn] cscpn})/
X (4E2[£0(E + a)? + 28P(a — £)P cospw]? + {l + 2£[EP(E + @) P cospm — tP(a — £)P cos2pn] cscpm}?)
— (2 cos(7/£)E#(£ + a)? + sin(r/E{EL + 2[£2(£ + a)? cospm — £2(a — £)P] cscpm})/(4£2[E 20(E + )27

+{1 + 2¢[£2(¢ + @) ? cospm — £P(a — £)P] cscpm}?).

(35)

For the choice p = 0,this expression reduces to Eq. (I.
62). For the choice p = 3,in Figs.6 and 7,the two non-
exponential decays,form the exact solution and from
Eq. (35),are plotted together,for @ = 0.1 and o = 0.8,
respectively. It is obvious at first glance that despite
certain similarities in the behavior of the decays for
small a,nothing like quantitative agreement is achieved.
Considerable differences exist in the time scales over
which they relax to zero,and for large « in the times at
which they attain their maxima and minima. For a =
0. 8, since the theory of I is intended for weak coupling,
this is not surprising,but for o = 0.1, it is evident that
there is a substantial and significant disagreement.

On the basis of the comparisons given in Figs.4 and 5,
it is possible to conclude that the results obtained us-
ing Eq.(33) are in good qualitative agreement with those
obtained using the exact solution, Eq.(27),for the choice
p = 3;furthermore, given the comparisons presented in
Figs.6 and 7, it is possible to maintain that Eq.(33) is
in better quantitative agreement with the exact solution
than is Eq.(35). These conclusions strengthen the argu-
ment stated in IV (also given at the beginning of the next
section) that the approach given in III is better all around
than the approach adopted in I and II,

VI. DISCUSSION AND CONCLUSIONS

The effort of this paper has been directed towards un-
derstanding the properties of the quantum-mechanical
solution of our problem of spontaneous emission in the
thermodynamic limit, and the relations that exist be-
tween this solution and that of the master equation. It
has been seen that the master equation,while reproduc-
ing certain qualitative features of the exact solution,
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fails to yield quantitative agreement for any of the non-
exponential parts of it,in just the same way as it failed,
as was seen in IV, to describe properly the behavior of
a finite system. This tends,then,to reinforce the con-
clusion of IV that the master equation, having been con-
structed specifically to deal with large systems with
weak coupling, cannot be pressed into effective service
outside this regime.

In a sense,once one has seen the nature of the exact
thermodynamic solution to the problem withp = 3, Eq.
(6),then it is evident that the master equation, although
possessed, through its non-Markovian property [see Eq.
(I.24)], of a great deal more structure than say,a simple
gain-loss equation of the Pauli type, cannot yield such a
variety of behavior as is manifested in the exact solu-
tion. For the links between ergodicity of the function
p(7) and nonanalyticity, in the thermodynamic limit, of
certain contributions to it,and of the important quantity
o (g) [Eq.(9)],have been seen to be rather complex,de-
pendmg on the properties of the form factor Ih {2 at
zero and infinity, as well as on the size of the couplmg
as measured by a. Nonetheless, the qualitative feature,
predicted by the non-Markovian master equation, of non-
exponential decay, a feature which does nof appear in any
simpler approach to spontaneous emission,is without any
doubt a real property of the exact solution.

The problem of the ghost state in models of the kind we
have discussed is a difficult one,but the point of great-
est interest for present purposes is the rather direct
connection that has appeared between the occurrence of
such a state and the failure of ergodicity. If a form fac-
tor is chosen so that no ghost appears, or if coupling is
sufficiently weak that its contribution to the time-de-
pendence of p(7) is small,then it is fair to say that the
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master equation, while still somewhat wide of the mark
when compared with the exact dynamics, gives a betler
description of the physics of the problem than when a
ghost is present,that is, when p(7) is not ergodic. Per-
haps, it should be added to the list of conditions under
which the master equation can be expected to be valid,
that the system it describes should have the ergodic
property as regards the observables of interest. Such
an attitude rules out the possibility of using the master
equation to investigate ergodic properties,but,as has
already been remarked in IV,there are quite enough
difficulties in understanding the rigorous status of the
equation,and its links to the dynamics of finite systems,
that this is no real loss. As a calculational tool for real
physical and chemical problems, the master equation
remains of the highest importance.

The conceptual problem of nonequilibrium statistical
mechanics, namely of how it is that one may reasonably
discuss the dynamics of infinite systems,is left largely
untouched by the above arguments. But it seems to the
authors that the possibility of examining, both analytical-
ly and numerically an exact solution to a problem which
can have the ergodic property—by the elimination of the
ghost—is very hopeful from the point of view of obtain-
ing a better understanding of this matter. The notion of
subdynamics!! has recently been introduced into non-
equilibrium theory, and it deals with the possibility of
separating from the full dynamics of a large system a
set of variables or modes,limited in number,whose
time evolution depends only on these quantities them-
selves,and which determine the thermodynamics of the
system. 1t has been pointed out by Levyl2 in a study of
the definition of unstable states in the Lee model,and in
a field-theoretic calculation very similar to that of this
paper, that by “suitable” choice of initial conditions the
nonexponential contribution to the evolution of his model
can be made arbitrarily small. A thorough investigation
of these matters is now possible within the framework
of nonequilibrium theory by means of the model of this
paper,and it may be hoped that in this way the application
of subdynamics to irreversible systems, and the concepts
of the thermodynamic limit and the master equation, may
be better understood.
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On the phase velocity and group velocity of guided waves
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Relations between the phase velocity and group velocity of guided waves in homogeneous media and the
restrictions under which they can be generalized to inhomogeneous media are discussed. Dirichlet, Neumann,
and mixed boundary conditions are considered, including the case of frequency dependent media and boundary

conditions,

1. INTRODUCTION
In treatments of homogeneous waveguiding structures
subject to Dirichlet or Neumann boundary conditions,
it is often demonstrated that phase velocity and group
velocity are related as follows:

Vv, = €2
and

v,=C= v,
where ¢ is the wave speed of the medium when un-
bounded.
Casel has recently given an interesting generalization
for inhomogeneous media. Propagation of the form

= ei(kz-
b = ei(kz wt)\Il(rp)

is considered, where ¢ satisfies the wave equation

2
qu;__l_ _a_g_—:o

c2 8}“2

and ¢ is independent of z but a general function of the
transverse coordinate »,. The variational expression

,  Js VW22, + k2 [5 |¥|2d%,

1
fs(leiz/c2)azy,
is the starting point, and it is shown that
1

v,v, = (2)

2 4 V5
and

v, = (1/c2) V2 = Vg, (3)
where 59

_w 4w {73 Js 1wi2a2,
s c2)d 7,

2. DISCUSSION

In clarification of these results, it should be pointed out
that (1) is valid for Dirichlet or Neumann boundary con-
ditions,2 and therefore (2) and (3) hold under that res-
triction., Implicit in the derivation of (2) and (3) is the
assumption that ¢ is not a function of w. ‘

Actually the cases of equality and inequality in (3) are
easily separated. It is seen from (1)} that equality is
possible only for the solution ¥ = const, a solution
which exists if and only if the boundary condition is
Neumann and the media is homogeneous.

While (2) is a noteworthy result which may provide
insight, one should be cautioned in its use, For inhomo-
geneous problems ¥ and consequently 1/c2 are functions

432 J. Math. Phys., Vol. 14, No. 4, April 1973

of w. Therefore the product v,v, is not constant but a
function of w. Since w and v, are mutually dependent,
the product v,v, is a functionof v,,.

Extension of (2) and (3) to mixed boundary conditions is
qualified and will be discussed in the following sections.
Frequency dependent media and boundary conditions
will also be considered.

3. MIXED BOUNDARY CONDITIONS

We denote the contour which is the boundary of the
waveguide cross section by I" and consider the boundary
condition

vy
where f may be a function of transverse coordinates
but not of frequency. The boundary may extend to infi-
nity, but only modes of finite energy are considered, i.e.,
Js!V¥|242y, and [; |¥|2d2r, are finite. Then it is
simply shown that

_ Js IV |2a2r, + k2 [ [W|2a2, + frf[\lflzdrp’ )

wz
fs(1wl2/c2)azr,

which is stationary in ¥, We consider w to be varied

by 6w and deseribe the corresponding variation in propa-

gation by 6% and §¥. Taking the limit 6w — 0 results in

relation (2).

If the case f = 0 {the previously treated Neumann prob-
lem) is excluded, we are assured that j s 1th!124er > 0.

Then
2> 1 [;_ _$cslizar, \3
P 172 Js(1¥l2/c2) a2y,
follows from (5). Therefore, f = 0 everywhere on I' is
a sufficient condition for

v, > (1/e2) 12> o,

That this result does not hold for general f is demon-
strated by the slow-wave (v, < ¢) structure consisting
of a homogeneous half-space bounded by an impedance
surface on which ¥ /on + f¥ = 0, with f a negative
constant,

4. FREQUENCY DEPENDENT ¢ AND £

If the problem is generalized to frequency dependent ¢
and f,a variation 6w will be accompanied by change in
the properties of the waveguiding structure, 5c and 61,
and by change in the propagation, described by 6% and
&¥, Effecting such variations in (5) and taking the limit
6w — 0,we get

Copyright © 1973 by the American Institute of Physics 432
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Js(e /o)1%12/c?) d2r,
fs( |‘I'lz/6‘2)d21’p

1 $.f ¥y,

-1
, (6
20 [ I\Illz/cz)dzr,,) )

Z)Pl)g =

% 1—w
1/(:2<

where the subscript w indicates partial differentiation.
This form does not invite interpretation as (2) does.

Now (5) is rearranged to give
1
1/c2
| V¥ | 242y
X( — w2 fs LA W
Js (1¥12/c2)dzr,

2 _
Uy =

frf|¢|2dzyp >-1
Js(lw|2/c2)azr,)

(n
Dividing (7) by (6), we have

Yp

Vg

=<1—w Jstey/oli2/c2)ar, 1 g f,1¥i%ar,
Ss(wl2/enazr, 20 fy(|¥l2/c2)azr,
xé_
Js(lwl2/c2)azy,

(8)
Dirichlet and Neumann boundary conditions are the
limit cases f - © and f — 0,with f, = 0. Comparison
of (1) and (5) reveals that in both cases frf |¥|2dr, - 0.
Therefore results for Dirichlet and Neumann boundary
conditions can be obtained by setting f, = 0 and
§.f1¥|2dr, = 0 in (8):

Js(l¥|2/c2)azy,
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w2 fSW‘I’lzdz"P_w—z $o /| ¥i2ar, >—1.

Js (e,/e) |‘1'|2/62)d27p>
w
fs( |‘I’|2/Cz)d2'rp
fS IV‘I’I ZdZyP -1
xé_wﬁ_______>
Js (1¥12/c2)azr,

We first consider the solution ¥ = const, which exists

if and only if the media is homogeneous and the boundary
is Neumann. In that case the indirect approach taken
here is unnecessary, since all propagation properties
are simply determined from k2 = w2/c2(w).

In all other cases [ |V¥|2d2r,> 0, so that sufficient
conditions for v, > v, are

¢, =0 everywhere in S for Dirichlet and Neumann
boundary conditions, )
¢, =0 everywherein$, f =0, f = 0 everywhere on

T for mixed boundary conditions.

5. CONCLUSIONS

For frequency independent waveguiding structures, the
product v,v, can be given in the suggestive form of 2)
if boundary conditions are Dirichlet, Neumann, or mixed.
The product is constant for homogeneous media. How-
ever, relation (3) applies without qualification only for
Dirichlet and Neumann boundary conditions, with
equality holding only for homogeneous media, Neumann
boundary conditions, and ¥ = const. For the mixed
boundary condition 9% /dn + f¥ = 0, (3) holds with the
restriction f = 0.

For frequency dependent waveguiding structures, re-
strictions on the media and boundary conditions have
been given which are sufficient to assure v, > v,.

K. M. Case, J. Math. Phys. 13, 360 (1972).
?P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), p. 111214,
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The factor ordering problem is discussed using functional integrals and the nonuniqueness of the
quantum Hamiltonian is more closely investigated. Systems whose Hamiltonians are quadratic in the
momenta are considered in detail and the equivalence of the canonical and Lagrangian approaches
is explicitly confirmed by an averaging procedure. It is important that the integrand be in an
averaged form if formal manipulations such as partial integrations are to be performed. This is prob-

ably significant for perturbation calculations.

INTRODUCTION

The functional integral formulations of quantum mechan-
ics and quantum field theory often provide conveniently
compact expressions suitable for formal manipulations
and for the generation of perturbation expansions. It is
not necessary here to justify the use of the method and
we refer to the books of Katz,!1 Rosen,2 and Feynman
and Hibbs3 for extensive background material.

Recently, functional integrals have been used in discus-
sions of the ordering problem. Given a classical quan-
tity, say the Hamiltonian, what is the corresponding
quantum operator?

Kerner and Sutcliffet and Cohen’ employ the canonical
approach in which the functional integral is one over
paths in phase space, i.e., paths {p(¢), q(¢)}. According
to Cohen® the ambiguity in the ordering is due to the
different choices one can make for the action A for
small time intervals, " — ¢,

Alp,al = [ (pdg —H a1). )

te

Typically,A occurs in a functional integral of the form
K(g",t"lq't') = 9 [[ etale.ald(p)lg), (2)

where, to obtain the usual propagator, we integrate over
all paths {p(t),q(t)} subject to q(t’) = ¢’ and g(t") = q".
There is no restriction on p.

To give a precise meaning to such an integral, it is
first of all necessary to turn the functional integrals
into lattice ones. Next, the total action A is split up into
pieces corresponding to the lattice intervals,and it is
here that the ambiguities occur.5

In the present work we wish to investigate this question
of ambiguities further and also to relate the canonical
approach to the strictly Lagrangian one discussed by
Rosen? and, more generally, by DeWitt.® The motivation
for this is provided, partly, by the use of functional
methods, canonical and Lagrangian, in the theory of
chiral dynamics.? It seems to us that in such a non-
linear theory one must be more than usually careful
when using functional integrals.

QUANTUM HAMILTONIAN

To obtain the quantum Hamiltonian for which (2) is the
propagator, we proceed formally and differentiate (2)
with respect to t” in order to obtain a Schrddinger
equation.

434 J. Math. Phys., Vol. 14, No. 4, April 1973

We have

i a?' K" t"|g',t") = [f —%% eitlrad(p)d(q)

=N [[ H (t"eird(p)d(q). (3)

Using the bracket notation, we can write (3) as

y a nin r 47 nyn 1 ’
z—at,,<q t7lq ey ={q"t"|T*(H(t")|q't"),
(4)

H =Hc(1_)1(1)!

where T* is the time ordering operator of Nishijima.
Expression (4) is not well defined when the operators
involved in H are at equal times, and recourse to the
lattice definition is required to resolve the ambiguities.
The method is that of Katz.!

" i A .
To obtain the derivative of ft , H.dt, we continue it by a

time At which is then divided into a network of 2m + 1
lattice points with the p and ¢ arranged alternately and
equally spaced. The expression so obtained is next
divided by A{ and the limits m — « and Af — 0 taken.

We find

im 35S H[p(tyasa),aliann),alty)] (5)
m->o0 k=0 At

At—=0

where € = At/(2m + 1) and where H(p,.1 /2,9 41,9 2) i8
determined only by the requirement that it should give
the Hamiltonian H_(p,,4,) in the limit of ¢ tending to
zero.5

It is expression (5) that should be substituted into (4) for
H, with p,q replaced by operators p,q.

If we choose
H(p,q9",q') = 2[H (0,9") + H (p,9")],
then for (4) we find
i%(q”t”lq’t') = lim (q"t"| T*{H [ p(t"),q(t" + €]
+H[p(t"),at”— O]} a't")
= (q"t"IH (p(t"), q(t ") |g"t"),
where now the time ordering is well defined and clearly
yields the symmetrically ordered Hamiltonianl:5 H _,

i.e., the average of the expressions with all the p on the
left and all the p on the right. -
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In order to obtain the Weyl ordering rule, it is neces-
sary to consider Hamiltonians of the form

Hc = qmpn.
We choose a lowest order term H(p,q",q’') as
H(p,q",q9") =H (p,3(g" +q'))

and find that (4) becomes

l—a <qntniqlt/> = lim q”t”‘T*
tll €">0

w L [g(t" + ¢) +qlt” —

- ot). (©

9]mpn(t”)

The time ordering is performed after expanding the
power by the binomial theorem,

[Z(t +¢€) + g(t —€)m= i':o C;"zi'(t + e)zm"’(t —e€). (7

[The fact that ¢(¢ + €) and g(t — €) do not commute does
not worry us Here as the commutator will be of order ¢
and will vanish in the limit.] Substituting (7) into (6), we
find the quantum Hamiltonian to be

m
9-m Z C;_nq'rpnqm—r,
1]

which is equivalent to the Weyl ordering.8

Instead of determining the quantum Hamiltonian through
a Schrddinger equation, one can proceed directly to the

Heisenberg equations of motion. These follow from the

functional integration by parts lemma.2

Thus we have
ff%emd(p) dlg) = 0
and (8)
8 _
If 3q £l dla) = 0

whence, formally, we find

: oH (p,9)]

1= T*; » )

and - T*gch(2’€)€ ®
= _.___az )

As before we must return to the lattice form of the in-
tegral to define the time ordering, and it is clear from
our previous results that we shall find the Heisenberg
equations of motion,

. oH

qg=-—=1i[H,q]

= 2 _
and

)

?:3?:7,[_1_1,3],

to be in accord with the Hamiltonian in the Schrdodinger
picture.

To summarize the main points, we can say that the for-
mal expression (2) will give different propagators de-
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pending on what lowest order term one chooses for the
action,

tim [ (pdg—H at) = <p(t) i[q(t +e¢)—qlt — O]

e~>0

—H(p(t),q(t + ¢€),q(t — €))>2€. (10)

Expression (10) is taken to be valid inside the functional
integral, as part of the implicit formalism, and this is
important because it enables us perform the functional
integration by parts and pass from (8) to (9). For this to
be valid, we require that

dA .
dt s ¢

under the functional integral sign.

CANONICAL VERSUS LAGRANGIAN

If we wish to compare and ultimately show the equiva-
lence of the canonical and Lagrangian approaches, it will
be wise to discuss systems for which they are not ob-
viously different at the start.2-8 Thus we shall restrict
ourselves to systems the Hamiltonians for which are
quadratic in the momenta. This class of systems is suf-
ficiently large to make the discussion relevant to real
life. The quantization of such systems has been discuss-
ed at length by DeWitt,® and we shall use the results of
his work.

We write down the classical Lagrangian and Hamiltonian

Lig,d) =  gopl@)i®d®, d%= %
(11)
H(p’q) = %gaB(Q)PaPﬂ, pq =guatie.

Now, instead of arguing from the classical to the quan-
tum Hamiltonian, it is easier to reverse this and take
the quantum equations (Schrédinger or Heisenberg) as
given and then ask for the corresponding functional inte-
gral. Again we concentrate on the propagator K(q",¢"|
q’',t’), which we will assume satisfies the covariant
equation

N a n " " ’ r ;s " ’ ’ "
(Z 5‘7,"' %Az)K(q Vg, ) = io(t" — t')e(g’,q"),

A, being the Laplace—Beltrami operator for the metric
&5+ The quantum Hamiltonian is thus fixed and reads®?

H= %g—1/4ea§aa€1/zeeg—1/4 (12)

in terms of the momentum operator p,. Passing to the
Heisenberg picture the operator equations of motion
follow directly if the canonical commutation rules
[Z"‘,ZB] =0= [Ea:?_a]» [?_w ZB] =— 6§ (13)
are employed. However, since the resulting, rather long,

expressions have already been given by DeWitt10 they
will not be repeated at this point.

We now ask whether it is possible to write K in the form
(2) with A given by (1) and H, by (11). Under the as-
sumption (10) with H(p,q”,q’) chosen to give the sym-
metrical ordering, say, it is easily checked that the
quantum Hamiltonian is not that of (12), and this is true
whatever ordering we choose.



436 I. W. Mayes and J. S. Dowker: Hamiltonian orderings and functional integrals 436

To make the quantum Hamiltonian coming from (2) the
same as the H of (12), one must take H_ in (1) not as the
classical Hamiltonian H of (11) but as H + B(q), where
the B term is to be determined and will depend on the
particular correspondence rule opted for. For the sym-
metrization rule we find

H(p,0) =H(p,q) + 53,0,8%8 — 3g1/4A,g71/4, (14)

This is the expression given in our earlier paperi?l
where the ambiguities inherent in the calculation were
not appreciated.

In general, then, we have the canonical expression
K(qntn‘qitr)
t* .
=0 ff exp G S (pude —H — B)dt) dpdale) (15)

with the undeystanding that in the lattice meaning of the
integrals the action is approximated to first order in the
lattice spacing € according to (10}, and the B term will
depend on the particular H(p,q",q’) chosen.12

Thus we have different-looking, formal integrals for the
same propagator.

The origin of this situation can be discovered by actual-
1y constructing the functional integral for K as DeWitt®
does. He, however, works directly with the Lagrangian
method, and so let us formally integrate over p to obtain

K(g"t' | gty = 3 [ exp(z' [} @ - magota), o)
where

D(g) = exp[35(0) [ In gdt]d(q).

By folding together the short time propagators DeWitt
finds for K the formal expression

K(q"t"lq’t")

= fexp(ist@tlet) + i3 Rl (), (7
where .

S(g"t"lg't") = ftt L(g)dt

and where R is the scalar curvature for the metric g.;.

The fact that (17) differs from (186) is not surprising be-
cause, as with (2), one has to say what one means by the
functional integral, i.e., one has to say how one treats
the integrand in a lattice approximation. For (186) this
is already defined, through (10), i.e.,weg(;,hoose the
lowest order term for the action S = J,, Ld{. This is
not true for (17), where one has to expand S in powers
of (¢”— ¢') as far as necessary (usually to the fourth
order). The paths that contribute to the functional inte-
gral are really Brownian paths for which 6g ~ €1/2 and
so (8g)4/e ~ €.,13

It will be demonstrated that expressions (16) and {17)
are, in fact, equivalent, the quantity B arising from
averaging terms of higher order in (¢” — ¢’) in the ex-
pansion of S{(g”#"lq’t’) in (17), as suggested before.11

The first step is to write (15) in lattice form, integrate
over p and compare with the lattice form of (17). For
definiteness we shall choose H(p, ¢”,¢q’) to give the sym-
metrical ordering, viz.,

H(p,q",q") = :{H (p,9") + H {p,9')].
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The action then becomes

n

kZ=:0 pa,k+1/2(q%*1 ——q%) - egaﬁ(qlulqu)

XPo, pe1/2D0, 40172 — 2€[Blg,) + B(G’kq)}% =e4A,,

(18)
where

GG pe1,92) = 1[£%B(G 4eq) + £%8(q,)]

and where the index % refers to the lattice point, i.e.,
g 4e1 = q(¢,,1), etc. For the propagator we have

K(qntnlqlti) — En;go_l/tggn_l/z} ff eieAs d(p)d(q) (19)
where
M= (2p) G 1)r,

and

d(p) =

s I

k1l

r n r
0 e por dla)= T T dag.

k=0 o= k=1 oa=1

v is the dimension of the space involved, o0 = 1,2,...,7.

The ihtegration over p can now be performed by the
standard method of completing the square and translat-
ing the integration variables. We find

g' 1/4g"1/4K(q”t” lq’t r)
= mwié)"(”‘l)rfz qu, d(q) 11 [det§ ab(q kol;‘]k)]_l/z
k
% exp (i D1(1/40)(af. — 4f)(@%n — 4%)

X G (@ 401,9,) — 3€[Blg,) + B(qkq)}}) (20)

where G, is the matrix inverse of G =8,
We compare {20) with the exact expression derived by
DeWitt.® This is

FY2mei) e1)v/2 fq “ alq) 1 g1/, gV 4q,)
xexp(z‘};_) 5(q 401y tperl@pts) +;‘;€R(qk)]> (21)
with the expansion of the action®
€S(qpi1rtpe1lTe th) = 38ap(a0(0% 1 —a%) a1 —a})
+ 15 P38us 4 (@003 —a9(q8s 1 —aD(@%. 1 —a%)
+ 53 [P6€asysldp) — P3gMq ) 0B, €],[v51],]
x{q%, 1 — aD(g8. 1 — a8(q%. 1 — @7 )(q%.1 — @9

(22)

Here P; and Pg stand for summations over the indicated
number of distinct terms obtained by permuting the free
indices on the object following.

If we use the symbol = to denote equivalence under the
multiple integral sign, then we wish to show that the fol-
lowing relationship is true

2-7/2(detg*8(q . 1,9 )] 12 exp{i[(1/4€)G;5,(q 41,9
x(q4e1 — 49(a%.1 — 4% — €B(g )]}
= gl/4(q 4.8V 4(q,) expli[S(q ga1,tper s te)
+5eR(g 1} (23)
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where we have replaced 3[B(q,.,) + B(q,)] by B(q,),
the difference being of higher order in €.

This equivalence is shown by an averaging procedure.
We are going to extract a factor

exp(i/2€)g (g  )(q% — aD(95., —a%) (249

and then average the remaining terms against this using
the easily derived theorems,
(2mie) ™2 [ dg"f(q")(q"* —q'*)(q"® — q'®)

x exp(i/€)g)s(4"Y ~ q'7)(q"® —q'?)

= ieg'aBf(q’) + 0(e3/2) (25)

and
(2mie) ™2 [dg"(q"* —q'®)(q"® —q'B)(q"7 — ¢'7)

X(g"5—q’®) f(q") expli/€)g.,(q"¢ —q' <) (g™ — ¢'")

=~ €2f(q")[g'*Bg 18 + g'o1g 85 + gl g/ 8] + O(e5/2),
(26)

the first of which was given by DeWitt.® The averages of
higher powers of (¢” — ¢’) can also be calculated but
will not be needed since they contribute at least to
order €3,

Before applying these theorems an expansion of
[detGo8(q . 1,4,)]1/2 in the form g1/4(q ,.,)g2/*(q,)
{1+ 0(q,., —q,)?] is needed. Higher order terms are
unnecessary because they contribute to higher order in ¢
and will tend to zero as € vanishes. We also require an
expansion of G 4.

A little algebra reveals that, correct to second order,

%Sae(qku,qk) = %gas(qk) + %gaﬂ,y(qk)(qykﬁl —q%)
- sl_s{ga)\(qk)gys(q k)g}\y,{,g(qk)
+ 2@ )8y5,5(0 08", (a)1(q%. 1 — a9 (a5, —a5).
(27)
Use of the determinant theorem
det(A + B) = detA det(l1 + A"1B)
= detA{l + tr(A 1B) + {{tr(A 1 B)]?
—%tr(A"lB)z + }
then enables one to show that [det§*f(q,,,, qk)]'l/2 is
equal to the following, to second order:
21/2g1/4(q k+1)g1/4(qk) [1 + %gaﬂ,y(q k)gaﬁ’é(qk)
x (g%, —aW g%, —a8)]. (28)
The calculation now proceeds by substituting (27) and
(28) into the basic requirement (23), extracting the factor
(24), and using the averaging equations (25) and (26)

after the remaining exponentials have been expanded in
power series up to fourth order in (¢ ,,; —¢,).

The algebra is rather tedious, and we therefore simply
state the result that

B(q) = Q(q) + 1g%6 ,(q),

where
Qlg) = — 314,871/,

Q@ is the @ term of DeWitt.10

A glance at equation (14) shows that indeed we have
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shown the equivalence of the canonical and Lagrangian
expressions (15), or (16),and (17), respectively.

It will be obvious from the preceding calculation that
the form of B will depend on the choice of the lowest
order “Hamiltonian,” H(p,q",q’). This is as it should be
if we are to have unique equations of motion since the
choice of H(p, ¢",q’) decided the factor ordering in the
quantum Hamiltonian as previously demonstrated. Dif-
ferences in the Hamiltonian due to different factor
orderings are compensated by different B terms in such
a way that the total Hamiltonian remains unchanged.

For completeness we now give the equations of motion
that come from an application of the functional integra-
tion by parts lemma [cf.Eqgs. (8) and (9)]. They are

éa + %Ijsg‘”,aéy + Q,a =0
and
Yo — %(gaﬁlzﬁ + Eﬂé’as)

in agreement with the equations of DeWitt.10 The canoni-
cal commutation relations (13) can also be derived by
the same lemma. The method is a generalization of that
given by Rosen? and will not be detailed here.

We emphasize that these manipulations are only pos-
sible because dA = (pg — H,)dt is valid inside the func-
tional integrals.

LAGRANGIAN METHOD

In most field theoretic discussions it is from the
Lagrangian formulation that perturbation theory is de-
veloped, and it is therefore natural to enquire whether
one needs the canonical approach.

We can begin by writing down the “naive” functional in-
tegral

K(g"t"lq't) =% [ D(q) exp<i fzt'“Ldt>’ (26)

L being given by (11), and asking what it means. To
answer this question, we must split the functional inte-
gral into a lattice one over variables q“(tk) =q9,
k=0,1,...,n,with g$,, — g% = € and let € tend to
zero, and » to infinity, as usual.

Exactly as in the canonical case the action
L .
S(q"t"lg't"y = [, L(q,q)dt

is broken into pieces corresponding to the lattice inter-
vals and, again, it is here that apparent ambiguities arise.

We assume that, for small €, the action is approximated
by

n
lim S = kZ—>1 L A(qp,q.-1)¢,

€0

where

lil‘% Le(qk,qk+1) = L(q;q)
(2 d

is the only restriction on L_. Clearly, different approxi-
mations will effectively describe different quantum sys-
tems, in general. Thus, on this basis, the propagator for
a given quantum system will have various functional in-
tegral representations depending on the choice of L.
As before, let us consider the system defined by the
quantum Hamiltonian H of (12) and compare DeWitt's
expression (17) with (29).

The equations of motion are covariant under point
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transformations of the ¢ and this shows up in the
covariance of expression (17). Now, expression (29)
looks covariant at first sight but is not so in fact. The
reason is that (29) is a stochastic integral with terms of
order (g, —q,-1)*/€ contributing to order ¢. Thus the
lowest order truncation of S(q,, tlg,_;,f — €) to

L (q,,4,-1)€, which is implicit in (29), is not a covari-
ant procedure. In order that (29) should be equivalent to
(17), it is necessary therefore to add a term — B(q) to
the Lagrangian L(q, q) to allow for this truncation and to
restore covariance.

We thus arrive at the form (16) previously derived from
the canonical method.

The B quantity can be calculated by equating (16) and
(17) and averaging over the higher order terms in the
expansion of §,as was done in the canonical method. Its
value can then be checked by showing that the (Lagrangi-
an) equations of motion correspond to those written down
at the end of the last section. Of course, we gain nothing
over the canonical method, but that is not our object.

The use of (16) with the truncated expression for S and
the inclusion of the compensatory term B is very con-
venient since one has (d/dt) [ Ldt = L inside the func-
tional integral, whereas in (17) such a statement is un-
true due to the stochastic nature of the integration.13
However, this is just the condition that must be satisfied
if we are to apply the functional integration by parts
lemma straightforwardly.

Obviously the form of B will depend on the choice of L,

which will determine the operator ordering of ¢ and 4 in

L(q,q),i.e., in the equations of motion. The particular L,

t_hat gives the simplest (symmetrical) ordering of g and

q,i.e.,

T*(ézf(g)) = %[ézf_(g) + f(g)tiz] + {terms arising
from ordering g2},

is

L fq(t+e€),q(t)] = (1/4€2)[q*(t + €) — q=(t)]

x [q8(t + &) — qB(e){gagla(t + €)]
+ gaB[q(t)]}!

and we shall determine B and the equations of motion

appropriate to this choice. We should point out that the

ordering here is not the same as the symmetrical

ordering of p and g. However, for practical purposes,

we might need the simplest ordering of fields and their
derivatives, in quantum field theory, for example.

The evaluation of B and the equations of motion is
rather complicated and we can only sketch the method
here. The details are in the Manchester thesis of one of
us (I.W.M.).

In contrast to the canonical method more care is needed
regarding the normalization. One has to ensure that the
unitarity requirement is satisfied.14 If one does this,
the basic condition for equivalence of {16) and (17) is

DY2%(g,.,1,4,) expli{(1/4€)(4%.1 — 49)(a%s, —qD)
X [gaﬂ(qk*l) + gcxﬁ(qk)] - €B.(Qk)})
= 5"/2g1/4(‘1k+1)g1/4(‘1k)
x exp{i[s(qk+1,t + €|qk) t) + %ER(q k)]}’ i (30)

where D is,basically, the van Vleck determinant, de-
fined by

D(qk+1,qk) = detDaﬂ!
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32
09%.+109%

Exactly as before we need an expansion of D1/2 to
second order. This is given in DeWitt.® We now substi-
tute this series into (30), expand S up to fourth order in
(q,,1 — 9, and average terms of order higher than

(g 4+1 —q,)2 using Egs. (25) and (26). A little heavy
algebra then yields the result

Dyg= [Le(qpe1,as) —Blgp)]e.

B=Q+3g% 5 —5(8.58°%7 y8%  +8,,8° 8¢,
+ 810,858,087 8% — 8ya,e8an, 87 &%)
+ %gyégay,ae

with @ as before.

Thus we now have the propagator in the form

n=1 n
K(qntulqltr) = lim f Il qu I Dl/z(qh+1,qh)
k=1 k=0
n

x exp(z‘ D [Le(dpna) ~ eB]), (31)

where everything is known.

The equations of motion are determined by means of an
integration by parts, which can be written formally and
then put onto a lattice using (31) in order to evaluate the
time ordered products that arise. The calculation is
again a little involved and one has to be very careful to
keep all those terms which might contribute in the limit
of € tending to zero. Not only this but it seems that one
needs the commutator function G*#(q,,q,_,) to second
order in €. G*B is defined by -

[9%.1,9%]=iG*(q21,4,).

Thus one is lead to a somewhat circular situation. Of
course, it is always possible to use the evolution equa-
tion

q%.1 = e eqgerite,

which can be obtained from the canonical method, and
if this is done, one obtains, after a further heavy calcula-
tion, the equations of motion in the form

d . . B .

%d_t (4P gop + 20pq®) = %Zﬁgra.a‘y —QatV.
with

Wo=1[g78(8%¢ c&sp.a).y + 28% .87 %8sy,

which is just what DeWitt? has given. These equations
are identical to the ones at the end of the last section.

DISCUSSION AND CONCLUSION

In reality the result of the previous section is no more
than a check that we have done our algebra correctly;
however, it does show, firstly, that the Lagrangian
method is more messy than the canonical one. This is
partly because limits of the form

flg"—q")

lim P

'~
e~ 0

do not occur in the canonical calculation and partly be-
cause, whereas in the canonical method T*(p,(f) p4(8)
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= pa(_t)_p s(t), it is not true that the equivalent expression
arising in the Lagrangian formalism, lim g E'ZT:* .
[ge(t + €) — g2 (g8(t + €) ~ gﬂ(t))], is equal to g“gﬂ.

In other words,there are problems ordering the q.

Further, it appears necessary to know the commutator
G%8,to second order in ¢, in order to obtain the equa-
tions of motion. This itself is a partial solution to the
problem and it appears that we must know this solution
in order to find the complete one. An appeal to the cano-
nical method is therefore called for at this point, which
is rather annoying.

The nonuniqueness of the operator orderings has been
treated using the ideas of Cohen® who showed that the
uniqueness result of Kerner and Sutcliffet was incorrect.
We have seen that it leads to various expressions for

the effective potential B, and it is possible that suitable
choices of ordering and of coordinate system could sim-
plify considerably any calculations. For example, if the
Riemannian space is the manifold of a semisimple
group, as in chiral theory, @ is a constant in canonical
coordinates.

Instead of arguing from the classical to the quantum
Hamiltonian we have done the reverse. We think that
this is both more practical and more fundamental as the
world is really a quantum mechanical one.

Finally we should like to emphasise that for calculation-
al purposes it is necessary, in many cases, to write the
functional integrals in the averaged forms (15) and (16)
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and it seems to us that this could be significant in any
renormalization of chiral loops, for example.
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The matrix elements of totally symmetric tensor operators in Sp(4), the spinor covering group of SO(5), are
obtained by direct factorization of the corresponding Sp(4) * Sp(4) matrix element. The general Sp(4) * Sp(4)
matrix element is factorized, and coefficients are obtained which possess a degree of symmetry higher than
that of the canonical Wigner coefficients of Sp(4), but which do not form an orthonormal set in the
multiplicity space. The canonical Wigner coefficients can, in principle, be derived from those obtained in

different ways by a Schmidt orthogonalization process.

1. INTRODUCTION

In recent years the Wigner coefficients of Sp(4) have
come under investigation as a result of the applica-
bility of the irreducible representations of this group to
the classification of nuclear states. Hecht1:2 has cal-
culated special cases of these coefficients, and Wong3
has also calculated matrix elements of the tensor oper-
ator (1 0). AliSauskas and Jucys4>5 have studied the
general cases of multiplicity-free tensor operators;but
in general expressions for the matrix elements of ten-
sor operators which are not multiplicity-free have so
far not been available.

A method exists, however, for the extraction of such
matrix elements by factorization of the Sp(4)*Sp(4) mat-
rix elements. This procedure has been suggested by
Biedenharn, Giovannini, and Louck®:7 for the case of the
group U(n), and all U(n)*xU(n) boson states, as well as
those of Sp(4)xSp(4) have been constructed.8 General
factorization of matrix elements in the orbital group,
however,is a very complicated process. No nontrivial
case of such a factorization has yet been accomplished
for any of the unitary groups, though the trivial (multi-
plicity-free) case of the U(2)*U(2) factorization is well
known. The present work achieves the factorization of
the Sp(4)*Sp(4) matrix element of a general boson state
into Wigner coefficients of Sp(4). The construction is
described in detail in the hope that it may have some
paradigmatic value for more complicated factorization
processes. The factorization, however, realizes canoni-
cal matrix elements of tensor operators in Sp(4) only in
degenerate cases,i.e.,only in cases that are multi-
plicity-free or that one of the three representations
being coupled is totally symmetric. In the most general
case, we obtain Wigner coefficients which have redundant
multiplicity labels. The Wigner coefficients obtained by
our procedure, then, must be subjected to a Schmidt
orthogonalization process in order to yield an orthonor-
mal set in the multiplicity space.

The procedure followed here is based on identities for

the general and singly stretched (9 — j) symbols found in

a previous paper.? It is to be hoped that the derivation

of these identities will indicate how the “(9 — j) symbols”
in U(n — 1) which occur in the general U(n)*xU(n) matrix
element are to be treated in order to allow the factoriza-
tion of this matrix element into Wigner coefficients of U(n).

In addition to the applications of the Sp(4) Wigner coeffi-
cient in nuclear physics, it is also useful in the theory

of generalized harmonic analysis of scattering ampli-
tudes. This coefficient, when analytically continued in
the three parameters ¢ of the representations being
coupled (in Hecht's notation & =J,, + A, + 1), contains
all Wigner coefficients of the Poincaré group as asymp-
totic forms. It thus provides an “analytic medium” with-
in which the different Wigner coefficients of the Poincaré
group may be reached from one another by analytic con-
tinuation and asymptotic expansion.
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In Sec. 2 we consider the matrix elements of totally
symmetric tensor operators and the general case in
Sec. 3. We use the notation of Refs.1 and 8 for the state
labels throughout.

2. MATRIX ELEMENTS OF TOTALLY SYMMETRIC
TENSOR OPERATORS IN Sp(4)
Our procedure will be to evaluate the matrix element

’ ’
mJ m,

(max) JERY (max)
Jl/;l A’rln B J. 0 Jm Am
J/l AII J’rn A’ J A
J’q 0
= [(J_RZ:\]'/ZE<J72 A;ln j’m A Jm Am>
M q \(max) m} m, (max)
Jlr,n A’r,n J'qo Jm Am
x{ J” A7 J"} A J A

where we have denoted the single multiplicity para-
meter as ¢q. The relation (2.1) is obtained from the
Biedenharn factorization lemma for the unitary groups,
which may be written

M), - T T
B( [m], |=ZmY2([m], ) (m), )om-12, (2.2)
m), _, Wyor) \B)ey

in which the tensor operators act in the upper and lower
spaces, respectively, of the orbital group U(n)*U(n). The
relation (2, 2) expresses the factorization of a boson
state of the orbital group as a sum of products of ab-
stract tensor operators, summed over their multiplicity
labels. The boson state is understood to be taken be-
tween basis states of U(n)*U(n), and the operator 9N is
an invariant operator of U(n)*U(n) whose eigenvalue is
the invariant measure of the state of maximal weight in
U(n)*U(n). The factorization lemma (2. 2) is obtained
from the embedding of U(n)*U(n) in totally symmetric
representations of U(n?), whose couplings are multi-
plicity-iree.

In studying matrix elements of boson states in
Sp(4)*Sp(4), we may make use of the factorization lemma
(2.2) if we consider the Sp(4)*Sp(4) states to be embedd-
ed in U(4)xU(4),i.e., we take into consideration the fact
that

my My
m;my j A
Jooa I, AN,
BlJ,A, |=B|2J, 2A, 0 0 (2.3)
J A g, A,
M, M, J A
M, M,
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that the Sp(4)*Sp(4) boson state is a U(4)xU(4) state
which has maximal Sp(4) labels in both upper and lower
patterns. The invariant operators YR-1/2 and 9N1/2 then
have as eigenvalues the invariant measures of the ini-
tial and final U(4)*U(4) states.

In forming the final state

(max)

Jr A"
JII AII
My My

(2.4)

in (2.1), however, we must multiply the boson state of
Sp(4)xSp(4) by a power of the symplectic invariant

(@} + a}} + a3y + a3",

where N =& + &’ — &”— 1,in order to obtain the
correct degree conditions. This state (2. 4), multiplied
by the invariant (2. 5),is no longer a U(4)*U(4) state, but
a superposition of such states. We denote the normal-
ized product of (2.4) and (2.5) as

m;’ my
j” AII
N; J7 A"
JII AII
My M7
(2a” + 1)(28" + 5)! 1/2
TANI(V + 287 + 5)1(@7 — A" — 1)1(®" + A")]
mll mll
B _ N ]II XII
x(0l(ag + a3} + ajg + agP¥ x B| Ju, A7,
JII AII ,
MM

(2.6)

where B indicates that the state is to be constructed
with conjugate bosons ai. Inserting a complete set of
intermediate U(4)xU(4) states, we obtain for the
Sp(4)*Sp(4) factorization lemma

mpmk| (mami\
A Y J oA
J" Av Bl g A [T, A,
J" AII JI Al J A
M5 M} MyMLy/) | M; M,
= D X @l nlgmie(m,)
[m”1,(T)
man
x [m"), ZA' 0 0f(27,, 2A 0 0
I AT,
(7)
(D
[m7, {|2J;, 24,0 ofl2s 27, 0 o0
X " ” mo,m ’ m m
Jn R g, A J," A,
L (y')
J7 A J(Y)A J o
Irln ” ’ ’ Am J;ln A” J/ Af J A
X J" A’r,n J:n A:n Jm A j" A"m ]'lm Y jm Km
Mo My \m, My i, M gmif\mymif|m, m,
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(2.5)

o (2A + 1) 1/2
((@— A—1I(® + A)!)
_ (N

(24" + 1)(28" + 5)1 1/2
1N + 28"+ B)1(@"— A”— 1)1(®” + A”)]

« (2a+1) 172
(@—a—1Dl2 + A)!
( )
”n AII Al J A
X SR(N;JI" A ")Z)< Foar|(m ar )7 A
O\my My | vy vy f |My
S ()
nNn T AL\ A
mimi|\ymlmi[|m,;m,

where MU (N,J” A”) is a constant of normalization. The
third member of the equation is guaranteed by the iso-
morphism of the Sp(4)*Sp(4) states with the matrix ele-
ments of finite transformations in the corresponding
irreducible representation of Sp(4). The expression

(2. 1), then, is to be interpreted in terms of (2.7). In this
paper we shall not determine the constant M(N,J” A”),
but shall consider only the techniques of factorization.

We now turn to the special case of the matrix elements
of totally symmetric tensor operators in Sp(4), and we
shall perform the factorization indicated in (2.1). In
order to do so we shall first perform the factorization
for the simpler case in which the initial and final states
of both matrix elements on the right of (2.1) are maxi-
mal. This case is trivial, since the coupling process is
analogous to that involved in the factorization of a
U(2)xU(2) matrix element into two SU(2) matrix ele-
ments. We shall quote only the result for the matrix
element of the reduced tensor operator:

<(ma.x) (max)>

—(C 1)Aeaa! < (@ + aAN® +J!, — &")1(2¢ + 1)

q
J, 0
J’ A

Jr—J, AT — A

m

(24 + 1)(247 + 1)INN; T2 A7 N " —
9 o +dJdo, —JINJn +J, +dJd"+ 1)1
H@+@d"—J,)—1—¢q]!

1/2
.

DLt AL~ AVHAL AL, A 1)!]1/2
(L@ + @ —J,) + q]!

L@, q N
1 ALt 1 wogs
L@a-ames’y Lawar-8') b

%(¢”-Q+J’V;L) q AP
Lan-nvsn

(2. 8)

1 (A+A =g ”?
1@rar-gmy o

where we use the abbreviations

@=dJ, +A, +1, A=J —A

m?

p=Jd+A+1, bs=dJd-—-A (2.9)

and similarly for primed quantities.
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Having determined the matrix element (2. 8), we may
now proceed to the evaluation of more general matrix
elements, knowing the exact form of the first element
on the right of (2.1), which is to be removed in the
factorization. At this point it is instructive to exam-
ine the coupling process in detail. We form the boson
state8,10

(max)
T} = 2 2 = l)zcé@"") 1@+ ®
J A dyJah Ay mymy 3@-9)z z’é $@-9) ¢
J A L
J AA g T, T A A A
X C 1 2 1 2

Jy=Iy A=Ay B T my om, Ty By A

1
X [T (2T )1 (2A,)

d 1 < 23
1(2A,)1]1/2 d"‘lﬂl(ali) dya,@19)

d,, (@3})d,;2, (a33)0), (2.10)
where
z=J, +dyg—dJd, Jdy+A=d,, Jy +A, =47,
(2.11)
and

[G+m)G—m)G+ p) (G — p)t]r/2
X1j—m—x)G—p—2)lm + p+ 2!

a4, @15 =D

x(a;')mmu(a;)j—m-x(af)j-p-x(al?)x. (2.12)
Similarly,
m m
¥ Y
Bl J, 0 =[(2/ )2 3 D
7" A TLTINAG mimy winy
M M, wnt v
J'oAT I, dgd’
X C"l"’z A-A3 §° e m{ mj My
v, AL A A JA”' . PINYRY
X (—1)A MAC“{‘,,? ,cl my DAmAC,T G
2 dlt, (@kd, @3
[(2J1)'(2<12)'(2A )!(2A2)1]1/2 ! v
x dﬁ‘ur(a%“)d,‘ v;(@33), (2.13)
Ji+ AL =4, Jp+tAy=N, Jptdy=d
A+ A=A, TN =j+N=J, (2.14)
and
(max) 1/2
J” A” _ (2@"+ 5)!
I AN T\ + 287+ )1
” AII
Ol@g+ag+ati+ad LT T DT
IMIZAG mymy
Myl
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L(Q"-‘P") L(¢II+‘P") o g A" ”
xc? 2 a
E(Q P Yzt g n_%(q, nepry g J.lu_Jzn Alu_Azu A"
9 CJ]f' Ju J" An A" A" 1
©omy I ey wg AT [209) '(2A ) 1(25)1(2A4)1]1/2
I, (Gl4) 4’z Ay
X dmanl,,(aM) dmzé,J,,(aza) arl I @34) d ,,A,,(agg 2.15)

and the summations are to be taken with the restric-
tions (2.11) above. Here N = & + J/, — &” ig the

power of the Sp(4)*Sp(4) invariant necessary to establish
the correct degree conditions when the commutations
are performed. We now evaluate

ffmax\| (7 "3\ | [ (max)
g7, A" J, A, rennn
(R L [ IR
JI’ AII , , J A
MJMA

207+ 52T )P + I — 7)1\ 1/2
x (= Damerons (§ @IS + T, = &)
(@ +J, + &+ 5)!

}‘ QI'-’W" _1_‘ ll+ ” ”
x B peecen genen
L( =@M Ymg? i L (D ¥ "
1380 2( @MY=z " 2"+ z(cb PPy 8
AGAFA"
Lie-¢) Le+v) ] , . ,
3 3 J A A I AT,

L@-9)z 246-1(@-¢) 5 N1772 AmAy & VI{I Af-AG §N

JU A"

A
X Crpagy ap-agy ool

,
4

Jy+dp+J7 DA+ AL+ AL+ 1)

X (Jg +dy +J5 +1)1(Ay, + Ay + Af + 1)1

(2] +1)(2J" + 1)(2j" + 1)(2J,, + 1)
((2J1)!(2Jz)!(2Ji)!(2Jé)!(2J{)!(2Jg)!

(28 + 1(2A7 + 1)(20 + 1)(2A,, + 1) /2
!(ZAZ)!(ZAi)!(2Aé)!(2A’1')!(2A§)!>

(24,)
Jydad J (AL Ay A ) (T, A d,) (I3 Ay A,
X JJL Ty IS Ay AR AT AL G b ddTh A N
Iy Iy I (NG A AN T AT (J5 A AT
JI J" A AI A" ]'l Jll A xl A”
X CJ g7=g 3% Cp Avep a® CJ Ti=T o T CA,,, A=A AT
(2.16)

We disregard the last four SU(2) Wigner coefficients,
since these are merely the coupling coefficients of the
SU(2) x SU(2) subgroups of lower and upper pattern
spaces. Examination of (2.16) shows us what our
immediate task must be: We must separate the (9-7)
coefficients into factors in which J; — J,, A; — A,,and
the corresponding primed quantities appear as mag-
netic quantum numbers, and similarly for the quanti-
ties J; + J,, A; + Ay, and their primes. The last two
(9-j) symbols in (2.16) are triply stretched, and hence
are monomials. The first two are only singly stretch-
ed. We make use of the following identity for the sing-
ly stretched (9-j) symbol 9:

J12 J3a J12 t J3a
Ji J3 Jis
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= 1)j4’j13'j34'1'1 (2j12)1(253) 10y + J2 — J12) 103 + ja —jag)tlGy +i3 +iiat 1)!>1/2
(212 + 234 + D121 310 + 53— 1310y t iz H 12 ¥ 1!
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« Grg *d13—Jaa t iag) Usa 13 *Jaa *iaa + DIGa + g+ J1a + jag — 1zt D! )
(71 + js—jz —j4 + j12 + j34)!(j3 + j4 + j34 + 1)!02 + j4 + j13_j12 “j34)!(7'2 + j4_j1 —j3 + j12 + j34)!
LUotda=i ~dg*Iy0*Ias) § Gr*damin=ia*iy gt aa) ¥ LUg*ig*iigtiaa=hs) Uzt ia*iahaise) o

3 Gy*i3=iia) 1 Gy +istiya) hs (2.17)
L Uy*igmh~s*hatise) § Grtis i da*F12*934) vy

XZ;C jl3

Jaiy F37h JpigtiaTh §Upia~hytistip-isa) 3 UpiamIia et ise) JoTs tiah

I
The (9-7) symbol on the right is triply degenerate and J J ¥y A A" W
has the]form of a monomial multiplied by a ;F, Z Coymay gy aymagbag-ay Cayony Ag=af A-Ag#Ag=-A{
series;it is thus proportional to the analytic continua- ;A v e A
tion of an SU(2) Wigner coefficient. Quantities depend- X Cyla, a-n, A Crp=spp np-ny -a"
ent on the differences between the first two columns of

the (9-j) symbol on the left are now isolated in the _ 4 " 1/2 pb A" Y
monomial coefficient and the magnetic quantum num- - Z\y‘\’[(zq’" 1@¥, + 124 + 1A+ D2 Gy pn g
bers of the indicated SU(2) Wigner coefficients. We v . e VI \IIJ
apply the identity (2.17) to the first two (9-j) symbols X CJ -7, 2 g A -A2+A"—A" aan SN AT, (2.18)
on the right of (2.16),labeling the parameter ¥ as ¥, 2 ! A A \IJ
and ¥, in the two cases, respectively, and perform the
summation We note that the dependence of the Wigner coefficient
|
oA an (201 2ANII!, + ' — AT, — §7 + M) 1/2 (2.19)
TS MG TN TN (@I ) I — d + I+ I — IR A — Ay + AL NAY + A — AL

on its first two magnetic quantum numbers is canceled by factors represented by [(2j,,)! (275,112 in (2.17). The
final two (9-j) symbols on the right of (2. 16) are monomials which cancel the factor in curly brackets in (2,16).
From monomial factors provided in (2. 17) we may now form two stretched SU(2) Wigner coefficients and sum:
2 C%(JNJZ-J{'—J{*J N @I Yd Ty 12 LA *ApmA-ASA") SAHAY=A =My A ") ¥\

L@ ~Ipmd e d e d (= 0y LT ~dpmd e d J=g 1+ 0) Ty =dprd F=d (T LUA =Ap=AY S AY A =A3) LAy =A,mAPFAZ=AT+AL) A =AgtAY AL

%(Jlez—Jln_JéH-Jl) %(A1+A2'A1”-Aé'+A’) %(Q-@"+J;n) %(J{’*JZ'I-JI-JZ*'J') %(A{'*Aé’-A‘-AfA') ‘é‘(q’l'-q’+‘7;n)
-J . =T " L ) A =p ” ’ ANty ! - -3 n_ g ’ A=A r 1 A it ’
S Ty=d T P4 =T LA =D ymA A+ A=A ) L(a-02450 =0 1) T L () -0, =4I G-I 405) LA ApmA A AL HAG) (BB SR

¥y L7 ¥
Jy=T gt d J=d " Ap=Ag+Ag=Af A-A"

X C

=[(2¥, + @Y, + 1)@ — "+ J!, + 1)(®"— & + I/, + 1)]1/2

J 1 “ 1 o ,

(@-2"+J ) (@"-0+J ,,) ¥
— AU __ AN Lean " o___ — z
(Ay # Mg =AY = AL+ A) AL+ AL = Ay = Ag + AV 0 CF (L o Ty
(@ <I>”+ J) He"— & +J7) 4

g(J1+J2 Jy—Jdy+d) M ATy —d —Jdy+J) ¥

(2%, + 1)¥, + DU, — )IJ, + ¢ + 1) 1/2
(2F + 1) — "+ J )" — & + J/ ) [(J' — ¥ )]

9 <(J1 +dyg—d{—=dg+ NPy +Ty—Jy—Jg +INVA] + Ay — Ay — A+ AVA] + A — Ay — Ay + A)\L/2
'+ ¥, + DA —FIHA + 8, + 1)!
X C ¥, ¥ %(@«p"w;,,) %(@"—w.f,’,,) ¥
J *Jz—\]ll'_lel A1+A2-A1"-A2" -3 " %(A_All*]'l_}\l) %(A_Al:_,,j:_)\:) A—A”. (2.20)

II

as monomial factors, and we write z; =z — . We then treat the two triply degenerate (9-j) symbols which
emerge from our application of the identity (2 17% by means of the relationl1

1 e 3 1 Ly 1 m ” 7
1@-0) L@+ @ Ll@-e") Leen) 2

2.21
1(@9)z z+8-1@-¢) 6 “L(@"-¢")-zvam s -L@ -en) o ( )

It remains to perform the sums over z =J, +Jy —J and 2" = J7] + J4 — J”. We write out explicitly the degenerate
Wigner coefficients

JuJ2 I T = (— 1)" T2 I3t Iasin < (22)1(2j3) 1(253) 12y + 25 — 2j34)1(—Jo + ja + jg)! 1/2
J1 +J3dzads t iz~ Jaq '

]3 ]4 ]34 - . . . . . . . .
(2]1 + 2j3 + 1)1(5, — J4 +.724)!(]2 tJ4 tigat 1)!(72 +j4_jz4)-
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x <(—j3 + gt 32y +jp + iz +iaa—jaa + DI@jy +p + 3 — d2a — J34) U3 — 2 + Jau +j34)!>1/2
Uz —J3 * jos— J3a)!Ua—jg + i3 Ga + iy +igg + DGz + jg—jzq)!

XE(——I)” (224 — 0)1(a + jq—daq + %)!
x x! Up—J3+iza—Jog + X)0g—Jg +iaa— )12y + ju + jz— jag + jaa +1— 2! ' (2.22)
We may immediately perform the sum over z,, since this is merely a ,F, series of unit argument. The remaining

three sums, over z, and the two indices of summation x, and x, obtained by application of the identity (2.22) to the
(9-7) symbols which result from the use of (2.17), have the form

5 pyata Oy —d +J"+ 2 )R — 2 )T — A+ A"+ x)12A — %) (@7 + & + ¢ — 9" — %, — %)
2, % %, WUy +d —d"—x 2" — 2] — 2, + x ) Ixp (T + A— A" —2,)1(3"— @ + 86— 06"+ 2, + x,)!

1
B+ @—x =)@+ @+ 05— "+ 2, —x)UP— 65— 2, — xp)!

X

(=@ +&"+d —J"+ 2))1(¥; —d +J"— 2 )1\}V2 N v 5.23)
U+ @—@"—J +J"— 2z )1(¥, +J —J" + z;)! Tod ez @@ M-S Moz e =S. (2.

This sum may be compared with the expression for the general (9-j) symbol12

i1 d2 Lz (Ula taa F It UGaa +3a 5+ D0is—Jag + D0y + 73— 513102 +-734—j)!>1/2

Ja Ja Jzap =(—" — ———— .
J13 7247 (y —Jda + i1y +ia + 13010y t i3 i+ D0 —Jaa T DH—Jip + g + 9!

% A(1ioi12)8Uajad 34) > l)jl-i12+m+x+y Clz Ja 24
Gy 31— 32)1G12 ~ d1 + §2)'Uza + 53— 1) Uas —d3 + ig)![(2igq + D]V2 2ym ™ T e I

8 <(jz-—m)!(j4—j + 13 +m)!>1/2 (2jy = X Gyg + g —J1 T X)(gq t i —Fp—m + x)!
(g +m)1Gs +j—jiz3—m)! *1(Grg —J1 —m + )10y + g — 12 — ¥)!y!

(23— 9 lgq + g4 —7jz + W (j12 ti1g—jz +m + y)!
(aa—dg—J +dis+m + DGz +ig—daa— ! Gy +ig—Jra—x —WU—Jjy—dg+iia+iig Tizgatit1+x+y)
(2.24)
it is evident that the sum (2.23) is proportional to (2. 24) once we make the analytic continuations - — & — 1,
&” > — d" —1,i.e.,(2.23) is proportional to an analytically continued (9-j) symbol. Specifically,
 prerenald e C 1ypoasr[ @@+ 9@ 0N + 01@"+ o)1 1/2
i(— " = (—
1V —3"—1 @+ — W)@+ + ¥+ 1B — )2V + 1)
&7 — 5" HD" + ") 1/2A JI" VAAA"E
[( )U( )1]1124( A ) s, (2.25)

(@, + J"— I T+ J"— L) (T + A= A LA + A" — g

where S is given by (2.23).

We must factor out the dependence on j’ and A’ into a factor of the form (2.8). From (2.18) and (2. 20), respectively,
we remove the Wigner coefficients

aan L(e-0"+J5) L(@%-u+d) " L(o=g"sJ! )= (2 + 1)\2/2
C ¥ 2( +J3.) 2( m) ¥ - E('— 1)\lt+A+A (_ I)A*‘z(‘i’ L 4d 1) 4(2‘1, + 1) —
A =A” A-A" _lz-(A-A"+j’—)\’) %(A—A"-jq)\') A=A" P (ZA” + 1)
a Le-emsdy) q| 1@-agp,) ba ‘ L@rray) A"
Jermayy an v TR & 4@t A O nn gy Lammeeny 8 (2.26)

All remaining dependence on j’ and A’ is contained in monomial factors prescribed by (2. 8), 80 we can use ¢ as our
index of multiplicity. Removing the Wigner coefficient of upper pattern space and inserting normahga’uon factors as
prescribed by (2. 7), we find the general matrix element of a totally symmetric unit tensor operator in Sp(4):

q
Jn AII JI 0 J A
J;’l Alf{l J’mA’ J‘m Am - (‘_ 1)A"+A’-A*-15(4>”-d>+J,,")+q-A"+2A+2J"’l <(

27 + 1)(2A + 1)(@ + J7, — cp")!)l/z
IM(N;J” A7) (28)1(287)!
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. [(2a+ D[E(@+@" —J,)—1—q]![z(® + & —J,) +q]i{J +J —J")!
—J + I
5 (—d +d +dNY +J+J7+ DA+ A — A=A+ A+ A")] 1/2[(1\ FAEATE DI Tt
(A__AI 4 A")! WJ‘IIA\I'
)2 1 1)[(J —WNI T+ D@+ — WD+ @+ ¥+ 1)1]2
20, + v, + v+ -
x @, + 1 W =TI+ T, + DA —F)IA + T, +1)!
¥, J" JJ" ¥ L 0 g
1(@7-9"=2+¢) I " A (@—d"+J Vg A7 I T a A A"
a1 PR R O 3%(@"~ F an " Cogaag g Cugoy g (2:27),
We note also the degenerate case
A T B\ _ (o gyprebenmensgr ety won (B £ 12D + (@ + I, — &")1\1/2
m m — (—
(max) J}"n A/' J A ‘.)Tl(N J" A” )(Q" n)
J MA MJ MA
@+ Ao —Aa—1DUE—d"+J, + DNI@"+ ¢ +J,, +1)1(28 + 1)J}, —J +I)!
(@"—®+ I ) —&"+ )@+ ¢)!
” — ’ " _ [ ' " . 1 ' 1/2 ” " ,
y (Im+d —Jd)VAL,— A+ AVAL + A— A [2q+ D[2@ + 8" — ") — 1 — gli[5(@ + &"—J") + ] [+/2
(® — o)
E (_ 1)21’1[(2‘1’1 + 1)]1/2 %(q)-@"n}‘m) A \]nl ¥ $ \[;2
v, [22"+ @ —Jd,)—1— ¥, |1[H&"+ ¢ —J,) + ¥, ]! “l@"-6-¢') b L"+-8") L(a%6-8") =6 F L7678
» CA” 2(@rerd ) ¥, 5 A ¥, Le-emeay) ¥, ¥ 2| Jl@meerd ;) L@7=0rd ) L(2+¢)
A" -1(amvere’) L@ =o)L (4-0) L-ed Ly g L(a=¢) L@+9) ¢ ¢ vs ar
o CJ J'dm AN AL (2. 28)
MygMydy, My My Ay

It is easily determined that our multiplicity param-
eter ¢ has the correct dimensionality to label the
multiplicity space of the totally symmetric tensor
operator. This dimensionality, as prescribed by the
theorem on the isomorphism of the state-labeling
problem and the multiplicity-labeling problem,13 is
given by

I — | —d | —IA" — A, |+ 1. (2.29)

It should be noted that our factorization method allows
us to determine the matrix element (2. 27) only up to
an orthogonal transformation in multiplicity space.
The particular representation which we have chosen
has the property that in the degenerate case (2. 8) the
reduced matrix element becomes a monomial. The
theorem on the dimensionality of multiplicity space
given in Ref. (13) is proved for tensor operators in
U(n) alone; the proof, however, also holds for Sp(4),
since the only hypothesis of the proof is the existence
of a eyclic vector in the carrier space of an irreduc-
ible representation.

3. FACTORIZATION OF THE GENERAL
Spl4) * Sp(4) MATRIX ELEMENT

We now wish to extract the most general Wigner
coefficient of Sp(4) by factorization of the Sp(4)*Sp( )
matrix element of the operator
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mym
sl ?\ =((<I>’+A’)!(<I>'—A'—1)!)1/2 =
JU A" (24" +1) J{AR{=5
M, M JgrAs=r’
1a-¢") 1(qw'+¢') [y

)Tt e?
1 3 AJrAG =T =d o+ T =A") 1(J1+J =AY AT =AY T A

% CJ' A’ 'A' 1
TITE ML TN (g )1(205) 1 (2A0)1(2A5)1]/2

Jy J
L 2 G2
Tt T my m
mymgy nity
Bkg vjvg

J’ A =My
2y DN M

Iy Ay ' Aemi ~dg A
x Cn nj m;(_ 1) Cu

,d,(a

In (a23)d s ’(a14)dp ’ué(agg)’ 3.1
where we have imposed the restriction j' + A’ =

J', + A, = & — 1 in upper pattern space. We wish to
take the matrix element of this operator between the
states (2.10) and (2.15). We find, as in case (2.186),

that this matrix element contains four (9-j) symbols,

but now the first two contain no degeneracies, while the
last two are triply stretched as before. We treat the
first two by means of the identity®?
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J1 Js '.’131 -~ 1)_-'13+j24+j <(.71 + ja_jls)!(jl +jg+ i3+ DGy + Ja —j24)!(j2 + g tiga + 1)!)1/2

X [(jy2 *jzqa = N1z + daa + 7+ DIV2A05152512)A(G30a734) E (2, + 1)2%, + 1)(2¥3 + 1)

J2 4 .124\

Jiz Jaa d (2j13 + 1)(2j54 + 1)(25 + 1)

123

X {[5(—~]1 —Jz t s u +112 + ]34) —‘1’1]![%(_]1 —J3z tiy t+ 34 t 12 +j34) + \111 + 1]!

X [2(jy +Jg—Jz—Ja + 12 T iza) = YEGy + g — jo — g + 1o +ag) + ¥, +1]!
L o )

X [2(jy +dg +J2 *ia—d12 — Gaa) — Y3l [3(jy + jg + jo + ja — J1z — dzg) + ¥y + 1)1}

% {j13124j }C v, v, hs C v Tos
W 3 Uy Fa*ipTy=iy g*iay) L 3 I3 gt iathaag) Gi~ds 5T IatiaiatdipTss) X (G ~ia*ipTy Ty 5tFag) Fpis

L . ! i
7 Uy J372 9a*F107954) § iy tia*tdymig*iy 9 79ae) Gy o as’

in terms of which the couplings become straightforward. We obtain the factorization

1 <N!(N +28"+5)1(®"— A"— 1)1(®" + A")I(®@ — A — 1)1(& + A)I\1/2
MUN; T, AL) (24" + 1)(2A + 1)(28" + 5)! >

J”

(max) J"; [ Ao An\ | fmaz)
gAY , ’ J_A J § Je oA AT A%,
XAl o7 AT ]|B :,’,m ﬁm I AT )= G g, 08 Ca
I A \p s 4 /I A
J” AII Jl A J A J" A ,
x 2 F Jo, AL T A
naa, 120 (Jﬂ i ”J:Am>Fql‘7243<J" WP AP g A" = G g, 7B O
T N T g,
” ’ " n
X C ”» Ju CA A" A:: < A,';' qJ da Jm Am J,m Am q.']
J J -J J A A=A A qf?IA J” Am J:n A;n Jm Am 2 AII j,”‘
j’ A, " "
I M)A JTOATA

where

"oAn roA " " L. L 1/2
F <JZ”A:r; T s JmA”') = (= 1)t Thmt A @re s 1
NaAa\J" AV JT AT T A M(N;J7 A”)(28)1(28")1(20")!

m

AN

A A=Ay, A” CJ J"-J J CA AY=A A"

AT

N
A,._A AL
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(3.2)

(3.3)

X [(2F + 1)(2A + 1)(2]" + 1)(2A" + 1)(2g; + 1)(2¢5 + 1)(2¢5 + 1)(@ + 9)1(@ — @) 1(® + 8)1 (B — 6)1(®’ + p')1]V/2

X[(® — @)@+ 6@ — 6)1(2" + ") (2" — ") 1(®" + 6")1(®"— 6")1[3(&" + @"— & — 1) — ¢, ]! ]1/2
X {[32" + 0"~ 2+ 1)+ g ]1[HE"+ & — 3 — 1) — g, ]![3("+ & — & + 1) + ¢,]![3(& + &

X{[3(@ + & —@"+ 1)+ ga|!}]1/2(® + ' —@"+ 1)I(@ + 3" — &+ 1)1(@"+ & — & + 1)!

X (20, + 1)2¥, + 1)(20, + 1)@, + 1)2¥; + 1)(2F, + 1)2" I’ J”% %A A A”%

Uy Uy ol [0, ¥ ¥,
Uy U, T) (¥ ¥y T) (U, ¥y I 1
xwlwg A \114\I/6A v, v, A" p—
‘13 qu q, 43 A') lag 9, A7 [2(2+ @ —@"— 1) — ¥3 — ¥4]!
1

X

Yieen

—®"—1)— ‘13]!}1/2

(— 1)2172 ¥ 2Ys

¥g

[B@+0 —@"—1)— ¥, + Y+ 1]1[2®+ & — 3"~ 1) + ¥y — ¥ + 1]![3(® + &

1

X
[+ @"—& —1)— ¥, — ¥, )1[E(@ +&"—&—1)— ¥, + ¥, +1]1[3(&' + &"—
1

& —1)+¥, —¥, +1]!

X -
[3(2" +@"— @ — 1)+ ¥, + ¥, +2]}[3(2"+ & — &' —1)— ¥, — ¥ )N3(@"+®— &' — 1) — ¥, + ¥, +1]!

1
(32" + @ -3 — 1) + ¥, — ¥ + 1)1[3(@"+ & — @' — 1) + ¥, + ¥ + 2]1

X

J. Math, Phys., Vol. 14, No. 4, April 1973

—&"— 1)+ ¥y + ¥y + 2]

(3. 4)
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The F coefficient (3. 4), however, cannot be identified
with the matrix element of a reduced canonical unit
tensor operator in Sp(4) because the dimensionality of
the parameters g4, 95, q5 is greater than the dimen-
sionality of the multiplicity space as prescribed by
the theorem of Baird and Biedenharn.13 Hence the F
coefficients (3.4) do not constitute an orthonormal set
in the multiplicity space, and we must follow a Schmidt
orthogonalization procedure in order to extract the
canonical Wigner coefficients. The Sp(4)*Sp(4) matrix
element treats the three representations being
coupled symmetrically, whereas the canonical Wigner
coefficient singles out one of the representations of
Sp(4) as the carrier of the multiplicity labels; hence
the coefficients (3. 4) possess a higher degree of
symmetry than the canonical Wigner coefficients, and
their usefulness is not exhausted when we have de-
rived from them a general canonical Wigner coeffi-
cient by the Schmidt process. The F coefficients still
prescribe the symmetries by means of which one set
of canonical Wigner coefficients is related to another,
i.e., how a Wigner coefficient may be expressed in
terms of others which select a different representa-
tion as the carrier of the multiplicity labels. In this
connection we note that the labels q., q5, g5 satisfy the
inequalities

®—-1=q,+q3=A=|gy—qsl,

‘1"—1241+¢132A'2|¢11—q3|, (3.5)

d'—1=2q, +q,2 A"= |g; — gq,1,

which the two canonical multiplicity parameters must
satisfy when the corresponding representation is
selected as the carrier of the multiplicity labels. How-
ever, (3. 4) does become the canonical Wigner coeffi-
cient when one of the three representations is totally
symmetric or in the case that the coupling is multi-
plicity-free, e.g., when one of the quantities

(@+¢& —8"—1),(d' +8"—d—1),@"+d— &' —1)
(3.6)
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is equal to zero. It is not yet known whether such
“symmetrical” parametrization or a canonical para-
metrization emerges from the direct factorization of the
U(n)*U(n) matrix element, but we may speculate that for
7 = 4, at least, the symmetries of the U(n)*xU(n) matrix
element will yield, under factorization, F coefficients
whose multiplicity space is “symmetrically” para-
metrized, and from which canonical Wigner coefficients
must be obtained by the Schmidt process. The U(3)*U(3)
case is special in that only a single multiplicity para-
meter is involved, its maximal compact subgroup is
multiplicity-free, and an operator algorithm is avail-
ableé for the extraction of the Wigner coefficients by
induction. This remains speculation since as yet no
direct factorization of U(n)*U(n) matrix elements has
been performed for n = 3.
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Basis states of irreducible representations of SU(4) in its Sp(4) basis are explicitly constructed in the boson
calculus by the method of lowering operators. Expressions are derived for the Wigner coefficients of internal
coupling and for the most general matrix which transforms an irreducible representation of SU(4) from its

Sp(4) basis to a U(3) basis.

1. INTRODUCTION

The representation theory of SU(4) in the boson calculus
has been studied by Ciftan for the U(3) basis!-2 from the
standpoint of combinatorial analysis, and by the present
author from that of the internal coupling structure of the
general basis state.3 It remains, then, to examine the
boson states of SU(4) in its Sp(4) 2 U(2) X U(2) basis;
the more limited problem of the SU(4) © U(2) X U(2) re-
duction has been investigated by Hecht and Pang4 and
Draayer.5 In the present work we shall use the general
lowering operators for the orthogonal groups construc-
ted by Pang and Hecht,® apply them to the state of maxi-
mal weight of a general irreducible representation of
SU(4), and so determine the general state of this repre-
sentation in the boson calculus. This induction is
carried out in Sec, 2, and in Sec. 3 we shall use the re-
sult to determine the SU(4) Wigner coefficient of the in-
ternal coupling and the matrix which transforms an irre-
ducible representation of SU(4) from its U(3) basis to its
Sp(4) 2 U(2) x U(2) basis.

2. CONSTRUCTION OF THE GENERAL BASIS STATE

The generators of SU(4), locally isomorphic to SO(6),
are given in thetable. The generators E;; have the
commutation relations

[EijsEre) = 8;,B ¢ — 0,0 Ey; 2.1)
and are represented by 4 X 4 matrices with unity in the
(i) place and zeros elsewhere. The SO(6) generators
L;; have the commutation relations

(L Ly )=18,,L;, —i8;, L, +38;,L,, — iﬁitl’jk(z a)

and are given opposite the SU(4) generators to which
they are isomorphic.

TABLE OF GENERATORS.

$(Eqr — Egy) 3(Lyp + Lag)

Eiq4 3[(Lag + Lyg) + i{Lgy + Lyy)]
Eg $[(Lag + Lyg) —i(Lgy + Lyy)]
3(Epp — Egzj3) 3(Lyp — L)

Eqs 3[(Lyg— Lpg) + i(Lpy — Lgy)]
Egy 3[(L1g— Lag) — i{Lyy — Lgy)]
i(E13 + Epyq) 3(Lsp +iLys)

3(Eg1 + Epy) 2(Lsz—iLys)

$(E12 —E3q) $(Lys + iLs3)

2(Egy — Ey3) 3(Lys—iLgg)

3(Ey1 —Epp —Eg3 + Egy) Lgg

3(E13 —Egy) 3(Lgy +ilLgs)

$(Ez1 — Eyp) 3(Lgy —iLgp)

3(E1p + Egy) 3(Lag + iL4¢)

3(Eq1 + Eyg) 3(Lyg — iLyg)
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The first six of these generators are those of the SO(4)
subgroup of SO(6) [the SU(2) x SU(2) subgroup of SU(4)]
and the first ten are those of the SO(5) subgroup of SO(6)
[the Sp(4) subgroup of SU(4)].

The most general irreducible representation of SU(4) is
described by three positive integers which represent the
number of nodes in the three rows of the corresponding
Young frame [m, 4m,,m5,],and a state of this repre-
sentation in the canonical decomposition SU(4) D U(3) 2
U(2) D U(1) is given by the Gel'fand pattern

Mgy 0

Myq Mgy

(2. 3a)
myq

An irreducible representation of SO(6) O SO(5) D SO(4)
D SO(3) O S0(2) is labeled by the Gel'fand pattern

Mgy Mg Mg3
Mgy Mmgg
Mgy Myq R (2. 3b)
KESY
Ma1
with the conditions
Mgy = Mgy = Mgy = Mgy = | mgy|
Mgy = My = Mgy = [ my,| 2.3

myy = mgy = | my,l

may = [ mgy .

The relations between the SU(4) and SO(6) invariant
labels are given by

1

me1 = z(myy + myy — mgy),
1

Mg = 2 (My4 — Myy + mgzy),

1
Mgz = z(myy — maq — mzy).

(2.9

The state of maximal weight of an irreducible represen-
tation of SU(4) is given in the boson calculus as

Miq Moy M34 0
Mig Moy Mm34
M4 Moy
myq4
-1/2, 123 12\m,~m 1ymigym
= Moy @123) 7 (@12) 724 34 (ag) ™14 ™24[0), (2. 5)
where

iy i veedi Vgt ... glk 9. 5
ajl"']k —? €(.7[1 Jlk)a]ll ajlk’ ( )
Copyright © 1973 by the American Institute of Physics 448
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the sum being taken over all permutations of the indices We now wish to obtain an expression for the general

(j¢),and €((j,)) denoting the signature of the permuta- state of such a representation in the Sp(4) O U(2) x U(2)
tion. We shall abbreviate a}j2k3 = a;;, and al =a,. The basis by means of the application of suitable lowering
bosons obey the commutation relations operators to the maximal state (2. 5). I.e., we wish to

find operators £ with the property that

<m61 Mga m63>
Mgy P

<m61 Mgy m63>
mgy — 1 gy

[ai,a})] = [ai,aii] =0,
[ai,ail]=6,.5;; £5

and the condition

E;Io):(ola;: =0. =0 ’

2.8
The generators are realized by the mapping Mgy Mgs Mgs 2.8)
4 £
Eij -3 E alzag, (2. 6) g l( msy Mgy )
p=1
The normalization constant for the maximal state is —c Mgy Me2 Mg3
given by 2 Mgy Mmsy — 1 ’

(Mgt 2)1(mgy + 1)img,!

M where the states indicated in (2. 8) are all maximal in

(myg— Mgy + 2)(myy — Moy + 1)(mgy — mgy + 1) their Sp(4) subgroups. Such operators have been found
(2.7) by Pang and Hecht.® In terms of the SU(4) generators we
| may write them

Ly =—(Egy —Eyp)(Egp —Egg3 + 1)(Eyy + Egp —Eg3 —E  + 2)(Eyy —Egy +2)(Eyy + By —Eg3 —E,, +3)
+ Egp(Egy +Ey3)(Eqy +Egp —Egg—E 4 +2)(Eqy —Egq +2)(Eyy +Egy —Eg3—Eyy +3)
+ (Egy +E4p)(Eyy —Epp —Egg +Eyy)(Egy —Eg3 + 1)(Eyy —Egy +2)(Eqy +Egpy—Eg3—Eg, +3)
— E3p(Eg1 —E 3)(Eyy —Egp —Egz + Eyy)(Eq1; —Eyy +2)(Eqyy +Egp —Ez3—Eyy +3)
— E(E1p Y Egy)(Egp —E3z + 1)(Eyy +Epg—Egz3—Egy +2)(Eyy +Epp —Eg3—E , +3)
+(Egy +Egp)(Eqy —Ey3)(E1p + Egy)(Egp —Egg + 1)(Eyy +Eppy —Eg3 —Eyy +3)
— Egp(Egy —E 3)(Epy —Ey3)(Eqp + Egy)(Eyy +Egy—Eg3 —Ey, +3)
— E33E41(E13 —Ep4)(Eqy +Epp —Eg3 —Eyy + 2)(Eqy —Eyy +2)
t(Egy Y E4p) (Egq + Egp)(E13 —Egy) (Egg —Egg + 1)(Eqy —E 4 + 2)
— E33(Egr —Ey3)(Egy + Eyp)(Ey3 —Epy)(Eyy —Egy +2)
— E41E39(E 3 —Egy)(Egy —E33 + 1)(Eyy +Epp —Egz —£44 + 2)
t(Egy + Egp)(Egy —E43)Egp(E 3 —Egy)(Epy —Ej3 + 1)
— E33(Egy —E43)(Epy —E 3)E5,(E 53— Eyy),

L3 = (Egq +Ey3)(Eyy —Epp + Egg —Eyy)(Eqy —Epp +Eg3 —E y + 1)(Ej; —E y +2)
—(Eg1 —E43)(Eyy —Epp —E33 +Egy)(Eyg —Epp +Egz—Eyy +1)(Eqq —Eyy +2)
—(Egq1 —Ey3)(Egy —E 3)(E1p +Egy)(Eyy —Egy + 2)
—E41(Bi3—Ep)(E1y —Egp + Egg—Eyy)(Eqy —Eppy +Eg3—Ey, + 1)

— (Eg1 = E43) (Egy +Eyp) (E13 —Epy)(Eyy —Egp +Egy +1)

max —

—(Egy —Ey3)(Egy —E 3)E5y(E 13— E,y). (2.9)
Applying these operators to the maximal state (2.5),we [
obtain the normalized semimaximal state y <(m61 —mgg + 1)1(mgy + mgz + 1)1 (mg; — mgy + 1)1
(mgy — mgg + )Hmgy — mgy )l (mgy + mgz + 1)1
Mg1 Mg Mg3
msy sy 8 (mgy + mgg + 2)1(mgy — mgyx) 1 (2mgy + 1) 1(mgy — mg3)!
sy My (mgy — mgy + 1)1(mgy + mgy + 2)1(mgy — mgy)!
51 X (mgg + mg3)! )1/2
mgq (mgo + mgy + 1)1
_ [lmg1 + mg3 + 2) (mgy + mgg + 1) (mgy — mgz + 1) x < ! )1/2
(mgy + mgy + 2)1(mgy — Mgy + 1) 1(mgy — mg3)! (mgy — mgg)lmgy + mgz)H(mgy — Mmgy)!

m.-m m,. ~m, 12 -m
X (@123)75% "03(a194a1 + G133a5) 707 2 (ayy) S 0

(@mgy + 3)1(mgy + mgy + 2)! )1/2

(mgy + mgy + 3)1(mgy + mgy + 2)1 X (@12 + ap2)™er ™s1 (g, )"z ™e3|0). (2. 10)
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We note that apphcatmn of the operator £3 merely re-
moves one power of alZ and replaces it w1th (alg + azﬂ)
the invariant of the Sp( )} subgroup. The operator £3,

the other hand, removes one power each of a4, and al,
replacing them with the factor

+ alld) — ald(aly

— 1
@12431 + Ay33a, = ai3(al} + aig).

(2.11)

We now proceed to apply the lowering operators £f and
.,(32, which have the properties, when operating on a semx-
maximal state of Sp(4), that

<m51 msz) . (’”51 msz)
=3
Mgy Myy myy —~1 my,)f’
51 m52> — ¢ M5y Mgg >
=}, .
My Myy My Myp — 1
These operators have also been determined by Pang and

Hecht® and by Hecht? in a previous publication. They
may be written

L1

£3

£4 =E3p85 + By (Eyy —Egy) (Egy —Ezy + 1)
— (Egy T Eyp)(Eqy —Eyy + 1)(Epy —Ez3 + 1),

L4 =E 4 (E13 tEyy) + (Egy —E 3)(Eqy —E4 4 + 1)

(2.13)
At this point we shall abbreviate
Mgy — Mgg = A, Mgy — Mgy = M,
mgy — Mgy = B, Mgy — Mgy =1,
meg + Mgz =C, Mgy — Myy = m,
Mgy — Myq =n', (2.14)

We may simplify the application of the lowering opera-
tors £} to the state (2. 10) by the following procedure.
We write the state (2.10) as
N1/2(ay55)4 " [a}3a}® — a}Fa}?]"(a}3) B

x (a}2)m(a,)¢70)

_qiz s mH= DT
=% 2?96'(" x)!

x(a}3)B-mn-x(a}3)*(a;)""(0)

(a}Z)m+x(a}3)n-x(a123)A-n

= i/2 "'(B——m+n_x)|( 1) 12\m+x (al3\n
=% §xl(”"‘x)'(B-—m+ )' (a ) (a )
X(B32)"(a155)4 7" @13) P~ (@,)¢#10),  (2.15)
where
W=t e (2.16)

is an Sp(4) invariant. Here, the generator E32 is defined
by

Eij —-E alaJ (2.17)

It is a generator of the group of “upper pattern space”
in the orbital group SU(4)*SU(4) and commutes with all
the generators (2. 6) of “lower pattern space.” Hence
the lowering operators £ may be commuted through the

powers of the symplectic invariants a#/ and the operator
(E32)* immediately, and we need evaluate only
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EHm (L3 (ay53)47 (@}2)B-m*n(ay)C=]0)
(A+B—m+ 1)1
(A+B~m—m' + 1)1
(A+B+C—n—m+ 11
(A+B+C—n—m—n'"—m' + 1)}

(B—m + n)! (C —n)!
(B—m—m"+n)! (C—n—n')!
G 4“1)(“_2)"'
@123%2/\%
53

X 2F1<—m’,—B—C+m—-1|A+B—m_mr+2|__>

= (- )™

X 2F1<—n',—A +nlC—n—n +1|

(2.18)
ai3

By
X (———) (a123)A-n (a%%)B—mﬂl (al)C-n|0>.

Adding the normalization factors of the three lowering
operators we find the general state of SU(4) which is
maximal in its SU(2) X SU(2) subgroup:
g1 M2 Mg3
ms51 M5y
Ma1 Myo
My
My
=ml&((A +B+C—m—n—n'+ 1)l
n'Iml(A+B+C—m—n+ 1)
(A+B+C—m—n—m" +1)I(A+C—2n—n’)l
X (A+B+C—m—n—m’'—n' +1)!
(B—m+n)1\Y2[(A+ 2B+ C —2m —m' + 2)!
><(A+C—2n)!> < (B—m —m’' +n)!

(B—m+n—m'+n')! 1/2
% (A+ZB+C—-2m+2)!(B—m+n+n’+1)!>
(A+B—m+ 1)I(C nl{—1)m™

X (A+ B—=m—m'+ HIC —n—n')! (B—m +n)!

. Z} (— l)x(B —m+n —x)! (a}z)m“‘(a}:’)”‘”(E"z)"

x xl(n—x)!
a124a1> (2)"'
Q1239 / \@;
x2F1< my,~B—C+m—1lA+B—m—m'+2|— %3)

a}}

(2. 19)

—n)!

X 2F1(—n’,—A+n|C—n—n’ +11—

ali\™’

X <_g_> (alzs)Am(alz)B—mm(al)c—nm),
ai3

where the coefficient Jl is merely the coefficient under

the squareroot sign in (2. 10). We may easily apply the

operator (E32)* according to the formula

8(al3)710) =2 x!

tu Hlul{x — t —u)!

(E32)*(a}]) *(ad))

a! B! y!
(@a—u)! B—D! (p—x+t+ )

x (a%‘zl)a—u(a%:a u(a )B *(azg)i(alz)lf"‘*“"(a %)x-t'u‘())_
(2. 20)
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We note that in the first Gauss function in (2. 19) we may
replace

a1249y = a}3ali — alal},
2
3

(2. 21)
a13382 = alfa}d — aigaé .

3. COUPLING OF TOTALLY SYMMETRIC
REPRESENTATIONS INTO A GENERAL

REPRESENTATION

For the purpose of forming matrix elements with the
boson states of SU(4) derived in the preceding section we
must expand our general states into powers of the indivi-
dual bosons a]i. In doing so we obtain an expansion of the
general boson state into totally symmetric representa-
tions of SU(4) which are coupled by appropriate Wigner
coefficients of SU(4). The first step is that of coupling
two such symmetric representations into a third repre-
sentation whose Young diagram has two rows which are
equal in length to those of the two symmetric represen-
tations being coupled. This coupling is straightforward,
since the resulting state is simply equal to the general
Sp(4) state studied in Ref. 8, multiplied by a power of the
symplectic invariant a}2, and normalized. The result is
Me1 Mg

Ms1

Mg2
Mega
Myy Myo
My
Mgy
B it A gt /‘Zgz Mgy
Jimdgt A hy=mg,

2

m My

HyHy
)

(=1)*

_ ~1
z=J+d, 2(m41+m42
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CJl Jg  z(myy + myp)
my my z(mgy + myy)

Ay Ay z(myq —myy)
1

By Mg z(myy — myy)

(ai)"x* my (a;)Jl' m (af)"z*"lz(ai)*’z‘mz

X
[(Jl + ml)!(Jl - ml)!(Jz + mz)!(Jz - mz)!

(a;)/\x*' Hi (a;)’\ 17H 1((12)/‘2*#2((1:)/\2 “dg

x
(A + ) 1Ay — ) HAg + p) (Mg — pp)1TH2

[0).
(3.1)

We may obtain a general state in the SU(2) X SU(2) basis
by lowering the magnetic quantum numbers of the last
two SU(2) Wigner coefficients; the normalized lowering
operators are given by

+ M) \22 .
((2J)!(J—MJ)1> (BEg)” 77,
(A+ M) \1/2 )
<m> (—Eg)" ™1, (3.2)
! Y
where

J=30mgy +myp),  A=i0my —my,).  (3.3)

Note that when the magnetic quantum number M, is
lowered from its maximal to general values we intro-
duce into the expression (3. 1) the phase (— 1)’\_M A, We
may then form the Gel'fand state of the SO(4) D SO(3)

D SO(2) chain by multiplying the resultant expression by

J A
M; My, mgy

m
3 (3.4)
and summing over M; + M, = my,.

We shall use the following notation for the representa-
tions of SU(4) O Sp(4) D SU(2) x SU(2):

g1 Mgg Me3
1
x 2 (Mg — Myy) 2(mgy + myy) +1 mgy +1 Ms1 Mgy
c: . , (3.5)
2(mgy —myy)—2 2 + myy — z(Mgy— Mmyy) My, J A
1 1 M M
X C z(myy + myy) 3(myy —myy) mgy 7 A
gy —Jdy Ay — A, Mgy which is self-explanatory in terms of (3. 3) and (3. 4).
| Our task is now to form the general basis state
Me1 Mea Mg3
ms1 Msy
J A
M, M,
! )
1 1 1
_ > Mgy Mgy | |2(Mmgy — mgg)  z(mgy — mgg)| | ngy z2(mgy + m63)>
‘1'7151 J A J3 A3 Ji Ai
Jgthg=5(meg, —mes) J—Jz A—Ai
Ji’Ai -
1 1 1
z(mgg — mgz) Mgy —mgg) z(mgy —m
VAT Mgz me3 2, 63_ e _2 @2 = ™63) me1 + 3(mey — me3)  E(mgy + mgz)  E(mgy + mg3)
z (mgy — mg3) z(Mgy — Mg3) s
Mgy Mo, 7 ngy z(mgy + migs)
1 1 1
. J, Jy J A, Ay A me1 + z(Mmgy — mg3) z(mgy + mgz)  F(mgy + mgg)
X c C n sm., + m
mipsmg=My M; mg M,  pu; puy M, 51 2yrez 63)
Hitpg =My J; Ay
m; oy
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1
30ngy — tigy) 2(mey — mggz) 2 (mgy — mg3)
1
z(mgy — megz) 3 (mgy — mgy)
Js As y (3.6)
m3 M3

where the totally symmetric representation is given by I

L under the restriction
3(mgy — mgz) z(mgy —mg3) 3 (mgy — mg3)

1
$(mgy — mgz)  5(mgy — mgs) Jg t Ay = z(mgy — mgs). (3.8)
J3 A In (3. 6) the operator pattern of the reduced Sp(4) tensor
ms Ls operator is abbreviated by the single index of multipli-
city ¢, and the operator pattern of the reduced SU(4)
= (= 1)hHs operator is omitted. The omission is possible since the
coupling of totally symmetric tensor operators is mul-
3\Jy*m 5y, Bvda-m g 3y Agrpar B3y Ag kg tiplicity-free in SU(4). The matrix elements of totally
(a]_) (a4) (ﬂz) (a3) 5 5
x [0) symmetric tensor operators in Sp(4) have already been
[(5 + mg)1{dg — mg) ! (Ag + pg) 1Ay — ug)!]t/2 studied,? so the task remaining to us is to determine the

3.7 reduced matrix element in SU (4) alone. The expression
| (2.9) yields

1 1
2(mgy — mg3) z(megy — mgg)  3(mgy — Mmgy)

1 1
Mg Mga me3 Mgy + zlmgy + mgg) z(mgy + mgz)  F(mgy + mgy)

1
3(mgy — mg3) 3 (mgy — mg3) .
n51 z(mgy + Mg3)

q
_ <(m61 + mgg + 2)1mgy — mgy + 1)1@2mgy + 3)1(mgy — mgy + 1) (mgy + mgy + 2)
(mel + mgy + S)I(msz + mgy + 2)!("”61 — mgy)(mgy + mgz + !

Mgy M5y

X

(mgy — mgg + 1)1(mgy — mgy)! )1/2

(mgy — mgy + DNl(mgy + mgy + 2)1

x ((mez = mgp)l[mgy + 3(mgy — mgz) +ngy + 3][mgy + z(mgy — mgz) —ngy 11 (2ng; + 3)1@2mg, + 1)>1/2
(mgy. — mgy)l(mgy + Mgy + D1(mgy + mez)! [ngy + 2(megy — mgz) — mgy !
X ({3[ns1 + mg1 — 3(mgy — mg3)] — a} {51 + msy — 2(mgy — mg3)] + 1 + g}1)1/2

1 . L
M2(ngy + 3(mgy — mgz) — mgy; 3(mgy + mgy), 2(ms; — ms5))

[n51 + 3(mgy — mg3) + mgy + 2]!

x E (— 1)m62+n51+ %(msz-m“) (— 1)%["‘51‘“51*%(”‘62""63)]*‘1””52 (2% + 1) (2¢ + 1)1/2
v

X <[‘I’ + msg — 3(mgg + me3)|[I[¥ — M5y + 3(mgy + Me3)] (¥ + ngy — mgy)![mgy + 5(mgp + mgz) + 1+ ‘I’]!>1/z
[20mgy — mg3) + ¥ + 1|1[5(mgy — mgg) — ¥]U¥ + mgy —ngy)!

x {[mgy + 3(mgy + mgz) — ¥}

y (mgy + mgy — mgy + msy + 1)[mgy — mgy +ngy + msy + 3(mgy — mg3) + 2]!

[mey + mgy — mgy + mgy — 3(mgy — mgg) + 1 + ¥]l[ngy —mgy + mgy — (mgy — mg3)]!

1
[¥ — mgy + 3(mgy + mgg)1rgy — Mgz + 1 — ¥)!

x {%[mm —ngy + 3(mgy — mg3)] gy — msy + 3(mgy — mgz)] ¥
%(mez + mg3) Ms5o q

1
X gFa(msy — 2(mgy + mgg) — W, n5y — mgy — ¥, mgy — mgy +ngy + mgy + 5(mgy — mgy) + 3|

Bgy — Mgy — ¥ + 2, ngy —mgy + mgy — %(ms2 + mgg) + 1/1), 3.9)

where we have adopted the phase conventions and para- pletely determined.

metrization of multiplicity space of Ref. 9. The undeter-

mined normalization constant 9 1/2 corresponds to the We note that we may perform summations over g and
same undetermined constant in the matrix element of the 75, in (3. 6) and obtain an expression for the general
reduced Sp(4) operator given in Eq. (2. 27) in Ref. 9, so state which contains fewer indices of summation; direct
that the product of (3. 9) and Eq. (2. 27) in Ref. 9 is com- coupling in (2. 18) gives us the expression
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M1 Mga
Mgy K

M4 Myo

myy
g 172 A+B+C—m—n—n"+1D{A+B+C—m—n—m'+ DA +C—2n—n)lntm )1/2
- (A+B+C—n—m+DIA+B+C—n—m—n"—m' +1)1(4A + C—20)1(B—m + n)!

(B—m—m'+n)1(A+2B+C—2m—m' +2)(B—m—m' +n +n’)\1/2
X
(A+2B+C—-2m+ 2} (B=—m+n+n + 1)!

X(A+B—-m+1DHA—n)1(C—n)Inl(B+C—m+ 1)!

x 3 > > (_l)x,mwﬂﬁZ+J1+J2_Ji+2J3+mm (B—m+n—x)1(A+B—m—m"— )lil(m+ x)!
Jid, Jathg=2A xyz wlin—x—w)l(n' +n—A+ A + A, + Ay —A—k+u—w)!
ArAg J;A; wvw

kt

Wy +dg +dg—d —m—m' + k)

X

(C—m—m' —n' —2n+dy +dy+dg—d +tk—ut+w)l(A] + Ay + A3 — A —k—y+u—w)!

(A + Ag + Ay — A —Fk — 1)1 1

Iy +dy+tdg—Jd—m—m' —n+k—u—z+w)! vim+tx—ov)l(k+t—y—0)lm' —k—x—2z + )l
y 1

(B+C—m+1—rk+u+0)(A+B-m—m'+1+k—u—2u)lylz!

1
(yv—t—u)llu+x+2)1t —y—2)(B—m—m'+n—t+y+2)IJ+dy3—dJy —Jdy + m+m' —k)!
1

X

A+ A3 —A)— Ay v+ +Ty—d, —m—m' +E)NJ +dy+J, +1—m—m' +F)!

1
X 1
Ay + Dy — A, —k— 1A, + Ay + A, +1 & — )1 YTa) V(AL A5) V(5T A)

5 @J; + 1) (@A; + 1)y +dy — )1y + dp +J; + D)I(Ay + Ay — A)I(A; + Ay + A, + 1)1\1/2
(27 + DI@ECA + 1)I(C + 1)1
e U A, %cch1 Jo h oMMy A Ty I A Ag A
Ji—dy Ay — Ay 3C muy  my my myy Wy M1z Mg Mg J Py uz A
N o S G i o M (e M (o
[y + m) 1Ty — m) 1Ty + my) 1y — my) 1(T5 + mg) (5 — mg)1]L/2

I A+ p 1.A,~p 2 A+ 2\A,~p 3 A+ 3\A,-
(az)"t 1(a3) 1 1(a2) 2 2(“3) 2 z(az) 3 “3(a3) 37 M3

0,, 3.10
[(Al + U-l)!(A1 - H-l)!(Az + Hz)!(Az b Hz)!(Ag + IJ-3)!(A3 - US)']UZ o ( )

where
J=3(A+B+C—n—m—n'—m'), A=3B—m—m +n+n'), J,+A =3%(A+B+C),

X . @+b—c)l@a+c—b)l{a+b+c+ 1)1\1/2
Jy+t Ay =3(A+B), J3+A;=34, Viabe)= .
b+ c—a)l

In the case of the expression for the semimaximal state (3. 10) reduces to

(3.11)

Mgy Mga g3
M5y M52
ms1 M52
351
Ms5o
VIAJ3C
=N 2ntmi(—1)8"m 2 20 20 V(AAGA) Y (JT5d,) 14,9;2€)
Tn=3(A+B+C) Jyrhz=f A 7p A+ Ay + A+ 1)1
JpA o= 5(A+B) diA;
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(@I V@A DL Ty — Iy Iy T DA+ Ay — AY A Ay + Ay + A+ 1)!>1/2
(2J + 1)1(2A + DI(C + 1)1
y (A+ Az + A, +1+p)I(EC+J +Jd3—A;— p)!
rim—r)plJy +dJg —J—dg—r+p)lld + A+dg+ Az + A, —Jy —Jy + 1+ 7)!
(Ay + Ay + Ag — A —m + 7)1 1

X
IHA+dg+ A3 — A —Jy —dy +7—p)l (I +J3—d,—p)l(EC—d—dg + A, + p)IJ + Jg + J; + 1— p)!
wc I A, 3C 5 cd J2 Y CA1 Ay AiCJi Js T oA A A
Jy—dy Ay — Ay 3C mu;  my my myp; Uy Py Mig Miz Mg J pyp pg A
(ab";* ml(alll)Jl— ™ (af)"z* mz(ai)‘lz_mz (a:;) Js*ms(ai) Js‘ms(a;) A1+“1(a;) Al_“](ag) A2+“2(a§) Apmi,

[T + m) ey — my) 1Ty + my) (T, — m )12 [y + my) 13 — mg) (A + w) A — p) 1Ay + ) 1Ay — py)!
(ag) A3+“3(ag)"s"“3
(Ag + p3)l(Ag ~ Hs)!]l/z

where the sums are taken under the restrictions (3. 11)

with the condition m’ =%’ = 0, The notation of (3. 10) . A - :

R . we may now easily determine the matrix which trans-
and (3.12) is explamed by (2.14) am.l. (3.‘ 6). I? bser\fe that forms an irreducible representation of SU(4) from its
the sum over p in (3.12) is a Saalchiitzian 4,F3 series,an basis in the U(3) D U(2) chain to its basis in Sp(4) D
analytically continued Racah coefficient. The parameter SU(2) x SU(2). We recall the boson state for the canoni-

10, (3.12)

I
In terms of the boson states which we have constructed

7 18 the index Of. summation which emerges upon the cal basis, which has been studied by Ciftan,12 and the
binomial expansion of (a}2)™ = (a1 + a33)™. present author3:
|
Mg Mayg M3 4 0
my3 Ma3 M3z -1/2 (8] 12
= 21 2 MT(Blo) Deyygoara)
Myg Moy (8l [al,
my s MG (o)
1 1
% C 5(312_322) z(mqyy + mzz"ﬁlz_ﬁzz) é(mlz—mzz)
1 1 1
Y — 2(B1z + Baa) myy — vy — 2(myg + Mgy — 1y — Bay) Myy — 3(Myp + myy)
M3 My3 Mgg| [Myz + Mgz T Mgz — My — Mgy 0 0\ |mqq Mgy 0
x o1 PP Qyp + @y — Big — Baa 0 B1sz Baz
@11 ay;— vy Y
my 4 Moy Mmgg| [fmyy + may+ Mz — Myg — My3 — Ma3 0 0\ |13 Ma3 Mmz3
X Mg Mgy Mg+ Myy— Qg — Qgy 0 Qg Qg2
Mg Myg— 01 A1

(a?) ”‘11‘7(ag)m12+ Mop" 11T "B1a7Byy (aé)“11'7'(a§)"‘12*“22'“11*7' “B137Ba2

X
[(myy —y)lmyg + mag —myy +y — Brg— Bag) (@11 — ¥V @1p + @gy — @11 + v — B1g — Bag) 1172

B Mt My MM~ M, 0 0ot Bt B 1.m ~c 2\ My, =0, = ppt Ol
(aS) 13 ™23 ™83 "2 22 12 Y227 Mi2 22(04) 14 11(a4) 24 12 Y22 Y11

[(my3 + mgg + mgz — myy — Mgy — 015 — Qg + Brp + o) (Mg — @11) 1Moy — @y — Oy + g )1]H/2

3\ Mo~ My 0= My ™ Mt 0y o+ 0L,
(a4) 34" 137 Mg Magt X127 %22

| 0) (3.13)

[(m3q — myz — maz — maz + gy + agp)!]H/2

in the notation of Ref. 3. Forming the inner product with the state (3. 6) we obtain

me1 M2 Mgz | M1g Mayq M34 0
My Mgy "3 Mag M33
J A my o Mag
M, M, mia
1 + A+
=3 ¥ > [(27, + 1) (2A; + 1)]1/2 [(Big —Bgaa + 1) (@19 —agy + 1)]1/2(_ 1)§(m14+m24) A+A,
Jilg ®izBi2 mipg Myl

IN dgr Ay (mgymmgy) %51
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. 1
S%(m14 - m24) J; A l f%(fﬁz _Bzz) %(] + m,;) s(x + U-i) }
%(] + m;) %(0!12—0!22) %(]—WL,)S l A %(7\_#1) %(0112—0!12)
1
c 3(B12 — Bag) 3[mg + pg + z(mgy — mgy)] 2(myy — myy)
Y —=x+m— ) (I3 —Ag +mg —ug) myq — z(myy + Mmyy)
1
< C slmgy + s(mgy —mgz) —J;, — A;] 3[mgy + 2(mgg— mgz) +J; + A;]+ 1 ngy +1
sA—j+Jd,—Ay) s(j—=2+Jd;,—A) J,— A
3 2
M3 My3 Mm33 ig miz — i?l Mg 0 0 |72 Mys 0
X 2
Qg Ugp 21 (@5 — Bi2) 0 B2 Baa
iz
3
LW Moy 34 21 (miy — m;3) 0 0| | ms Ma3 33
iz
X 2
g Mgyq Zi (miq —a;p) 0 3 Ugg
iz
M1 Mgz mga| [$(mey — mgs) }(mey — mgs) Elmgy — me3)\ |mg1 + 3 (meg — Mmgz) 3 (mey + Mgz) 30mey + Mgy)
% M5y M3 F(mgy =~ Mmgy)  E(mgy — mgg) 51 3 (mgy + mMg3)
J A Jy Ay J, A,
M, M, my s m, By (3. 14)

Of the final three Wigner coefficients indicated in (3. 14) !

the first two are reduced matrix elements in U(3), which
have been given explicitly by Chacdn, Ciftan, and Bieden-
harnl0; the operators are totally symmetric, hence mul-
tiplicity-free. The last Wigner coefficient is simply the
total coupling coefficient indicated in (3. 6). The follow- ACKNOWLEDGMENT

ing restrictions hold in (3.14) in addition to (2. 4): The author would like to thank Dr. Wesley Brittin for his
Myg + Mog + Mgz =205 + 22X + j +J3 + M, kind hospitality at the University of Colorado.

The inner product of (3. 6) with SU(4) states based in
other U(3) subgroups is easily found by means of appro-
priate Weyl transformations.

= Mgy + Mgy — Mgy + A+ Az + M,

‘m12 + Mgy = Mgy + Mgy — Mgg + My + M,, *Present addr.ess: Physics Department, Duke University, Durham,
. North Carolina 27706.
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Conformally invariant orthogonal decomposition of
symmetric tensors on Riemannian manifolds and the
initial-value problem of general relativity*
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It is shown that an arbitrary symmetric tensor {*® (or ¥, ) of any weight can be covariantly
decomposed on a Riemannian manifold (3,g) into a unique sum of transverse-traceless, longitudinal,
and pure trace parts. The summands involve only linear operators and are mutually orthogonal in
the global scalar product on (M,g). Each summand transforms separately into itself if the
decomposition is carried out properly in a conformally related space (M,g). The decomposition is
therefore determined by a conformal equivalence class of Riemannian manifolds. This property
makes the decomposition ideally suited to the initial-value problem of general relativity, which
becomes, as a result, a well-defined system of elliptic equations. Three of the four initial-value
equations are linear and determine the decomposition of a symmetric tensor. The fourth equation is
quasilinear and determines the conformal factor. The decomposition applied to the space of
symmetric tensors on (M,g) can be written in terms of a direct sum of orthogonal linear spaces and
gives a framework for treating and classifying deformations of Riemannian manifolds pertinent to the

theory of gravitation and to pure geometry.

1. INTRODUCTION AND SUMMARY

The purpose of this paper is essentially twofold. Firstly,
we give a conformally invariant, orthogonal, covariant
decomposition of symmetric tensors on positive-defi-
nite Riemannian manifolds into transverse-traceless,
longitudinal, and pure trace parts. Secondly, we show
that this decomposition enables one to set the initial-
value problem of general relativity as a system of four
second-order elliptic equations for four unknown func-
tions. Three of these equations are linear with a con-
formally-invariant vector field as the solution. The
other is quasilinear and determines the conformal fac-
tor. Physically, the unconstrained fields correspond to
pure spin-two transverse traceless dynamical variables.
Geometrically, they describe the anisotropy of space.
This description is of course equivalent to the conven-
tional treatment of space-time in terms of a hyperbolic
four-metric (4) g  satisfying Einstein's field equations,
but is more usefuli or a number of purposes.,

It is well known?! that in flat or in curved Riemannian
spaces one can decompose an arbitrary vector or one-
form into its transverse and longitudinal parts. Physi-
cally, this procedure leads to the identification of the
true canonical degrees of freedom of the electromagne-
tic field and to the identification of the gauge, or non-
dynamical, variables. Thus, if A is the magnetic vector
potential and E the electric field, then the transverse
fields A, andE,(V+*A, =V +E, = 0) are the dynamical
or pure spin-one variables, while the longitudinal (1)
part of A is determined by a choice of gauge. Moreover,
this decomposition is not only covariant with respect to
arbitrary coordinate transformations, it is also orthogo-
nal in the natural global scalar product. That is, for any
two vectors v and w, we have

Ju v VW Pg 0y = (Vy, W) = 0, (1)

where v, denotes the volume element which makes the
integral invariant and the integration extends over the
entire manifold M. Geometrically, the decomposition of
1-forms, and more generally p-forms, leads via de
Rham's theorem to a characterization of topological in-
variants of M (i.e., Betti Numbers).2

In this work, we shall consider three-dimensional Rie-
mannian spaces because this case is of the greatest
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interest for physical applications. However, the results
are easily generalized to n-spaces, provided they are
Riemannian, i.e., have positive-definite metric.3 Also,
it is assumed that the three-spaces are closed (compact
manifolds without boundary) and complete. The choice
of closed spaces is made for mathematical convenience,
and because closed three-spaces are of greatest inter-
est in recent studies of the classical and quantum dyna-
mics of general relativity.4 However, the decomposition
is also valid for open, asymptotically flat 3-spaces, cer-
tain assumptions being made as to the decay of the met-
ric and other tensor fields as one approaches infinity.5
In the pioneering work of Deser® on the covariant de-
composition of tensors, only the case of asymptotic flat-
ness was treated. Deser's procedure is also satisfac-
tory for closed spaces; however, his decomposition is
neither conformally invariant nor completely orthogonal
in general,

There are two compelling physical motivations for de-
composing symmetric tensors, both having to do with
gravitation. One is the desire to separate gravitational
variables into irreducible (spin) parts, so as to distin-
guish the dynamical (spin-2) variables from gauge
variables and constrained variables. This was done in
general relativity by Arnowitt, Deser,and Misner!using
anoncovariant decomposition and was treated covariant-
1y by Deser® in later works. Another strong reason is
that a covariant procedure should lead in the initial-
value problem to a well-defined system of equations
determining the constrained variables (Sec.4).

From a mathematical point of view, the decomposition

of tensor fields is also significant. A certain “T-decom-
position” 6 (T =transverse) of symmetric tensors
characterizes possible deformations of Riemannian
manifolds, as shown by Ebin,? This is also important

in general relativity, for the dynamics of gravity may

be viewed as a continuous (time-dependent) deformation
of spacelike hypersurfaces in enveloping spacetimes
satisfying Einstein's field equations. This deformation
process may also be viewed in superspace $, which is
the collection of Riemannian metrics modulo diffeomor-
phisms of M. Each point of § is a 3-geometry 3G = (M,g).
The structure of superspace was examined in detail by
Fischer8 and was discussed in a helpful article by B.De-
Witt.? In the Appendix, we show that for metrics possess-
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ing symmetries, one can readily construct from one
transverse tensor others which will also be transverse.
Similar results hold for the TT decomposition.

In a certain sense the superspace picture and the asso-
ciated T-decomposition of symmetric tensors are not
sufficiently “fine” for all purposes in treating gravita-
tion. This is the case because, using Wheeler's phrase,10
“3-geometry is the carrier of information about time”.
Thus, 3G may be regarded as being specified by three
functions (g,, modulo diffeomorphisms of M) and its
associated momentum, a transverse tensor density, is
also specified by three functions. If these six functions
were subject to no further constraints on a spacelike
hypersurface, we would conclude that the gravitational
field has three, not two, canonical degrees of freedom at
each point of space. However, the metric and momentum
are subject to an additional constraint. (The transversa-
lity of the momentum already comprises three of the
four equations of constraint), We may regard, therefore,
one of the metric variables and one of the momentum
variables as describing a nondynamical pair of variables
subject to a constraint. To what physical quantities could
they correspond ? Not surprisingly, they correspond to
“time” and the “Hamiltonian.” 11 Qualitatively similar
arguments to this effect have been given in analyses of
the dynamics of gravity by Dirac,12 by Misner,% by
Arnowitt, Deser, and Misner,l1 by Wheeler,10 by Ku-
chaf,13 by the author,! and by others. Therefore,
because there is one constraint on these fwo variables,
one of them may be specified and the other must be
determined by satisfying the remaining initial-value
equation.

Details of the procedure followed differ among different
students of the problem. Some prefer simply to carry
along the extra pair, letting them, in effect, be governed
implicitly by the fourth constraint written as a “Hamil-
ton-Jacobi” type functional differential equation. This
is what may be called roughly the ““superspace ap-
proach.”14 Others make a choice of space and time co-
ordinates based on some “preferred” background met-
ric and select dynamical and nondynamical variables
according to the criterion of convenience in treating
the problem at hand. The essence of the latter formu-
lation is found in the “mini-superspace” approach,15.16
where only metrics with certain specified symmetries
are considered. Thus, all degrees of freedom of the
field are assumed to be frozen except those with the
given symmetry. This procedure involves an element
of risk because the gravitational field is nonlinear:
degrees of freedom with different symmetry, or no
symmetry, do interact; thus, ignoring some of them
could lead to misleading conclusions, Moreover, in

the quantum version of this approach, freezing certain
degrees of freedom manifestly violates the uncertainty
principle. These points are well known and have been
discussed in the literature.15.16 Of course, there are
a number of other schemes for dealing with the prob-
lems engendered by the constraints, but I will not dis-
cuss them here,

One notices the “dual” nature of this problem: (1) pick-
ing variables in order to satisfy ultimately the initial-
value equations on a spacelike hypersurface; (2) treat-
ing the dynamics of gravity based on this choice. In
reality, however, there is only ore problem because if
the constraints are satisfied at one moment, they auto-
matically continue to hold at succeeding moments by
virtue of the field equations at that moment and the
contracted Bianchi identities (4V,()Grv = 0, [We use
a prefix (4) and Greek indices when referring to space~-
time, as opposed to space.] Moreover, it has been shown
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that from the initial-value equations one can recover
the entire dynamical content of general relativity.17

There is, however, a specific choice of variables which
lead to a refinement of the superspace approach,11.18
To proceed further,I make the only apparent simple
three-dimensionally covariant refinement of variables,
namely, the scale or conformal factor of the metric and
the trace of the momentum tensor (actually the scalar
part of this trace) are identified as separate entities.
These two variables are selected to comprise the
“extra” pair. There are compelling physical reasons
for this choice. Firstly,I have previously shown that
the 3-geometry modulo conformal factor specifies the
pure spin-2 (TT) representation of space geometry.18
Secondly, the scalar trace of the momentum is just the
“volume Hubble parameter”,i.e., the specific rate of
volume expansion of the 3-space as it evolves in space-
time.11 Therefore, this scalar is naturally identifiable
with “time,” in that it identifies the expansion or con-
traction epoch of the 3-space in its history. Thirdly, if
we use this scalar as x9 = ¢ = time, then on the sur-
faces t = const., the trace-free part of the momentum
tensor is transverse. Hence, the dynamical part of the
momentum tensor is TT, and a TT tensor is determined
only by the underlying conformal geometry.18 (See Sec.
3). Mathematically, this procedure is fruitful in the
initial-value problem (Sec.4). Earlier,Diracl2 made

a related choice of variables, in that he treated the scale
factor of the geometry as a nondynamical variable,
However, he did not show that the conformal geometry
has the properties we have mentioned above, nor did he
use the scalar trace of the momentum as time. Rather,
he set this trace equal to zero for all time as an impli-
cit condition on the time coordinate. It is by now well
known that time variables compatible with his procedure
do not exist in closed universes, i.e., for closed 3-
spaces, in general.14 This defect is not present in our
case,; in fact, the scalar trace need not necessarily be

a constant (Sec.4). In any case, our time variable is
local and identifies the surface in spacetime to which
one is referring.

Because the 3-geometry contains as an “extra” variable
the scale factor, it does in a sense “carry information
about time,” though somewhat indirectly. The fact that
the 3-geometry must carry extra information of some
kind led Wheeler1? to ask, in effect, “What is two-thirds
of superspace ?”” An answer to this question is given in
Sec. 6, namely, “conformal superspace.”

The “TT-decomposition” described in this paper charac-
terizes deformations of conformal Riemannian manifolds
M,g) =34 ,where g,, = (det g)"1/3g,,. Thus 34 is
determined by a Riemannian metric g,, modulo diffeo-
morphisms of M and modulo conformal mappings

£.5 = 948,44, Where ¢ (x) is an arbitrary, real, nonvanish-
ing scalar function on M. (We may say 3 is deter-
mined by g,, modulo “conformeomorphisms”29 for
short.) The collection of conformal 3-geometries may
be called “conformal superspace” 8. Each point of 8 is
a 34 . We sometimes find it convenient to regard 34
also as a set of conformally equivalent Riemannian 3-
geometries. In all respects, the TT-decomposition bears
the same relation to § and to the dynamics of 3 in
space~time that the T-decomposition bears to § and to
the dynamics of 3§ in space-time,

However, the TT-decomposition has features that the
T-decomposition does not possess. Notably, it is a
“finer” splitting of a symmetric tensor than the T-
decomposition in that it has more independent pieces.
This fireness leads to its conformal invariance, which,
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in turn, makes it quite useful in analysis of the initial-
value equations. Moreover, since conformally invariant
objects described the pure spin-2 aspects of gravity.18
the TT-decomposition is ideally suited to the construc-
tion of such objects.

In Sec. 2, the TT-decomposition of a symmetric tensor
b is defined by

vl = win + YL + L, (2)
where the longitudinal part is

‘Pﬁb =vewbd +VbW“—%g“bVCWCE (LW)ab (3)
and the trace part is

Vit =h g, Y=g..9c @

We use V, to denote covariant differentiation and 9,
ordinary differentiation. Our conventions are such that

VisVe) V.= % Vdeach’ (5
R =Rcacb . (6)

The transversality requirement leads to the only equa-
tions that need be solved in this procedure. This can be
done, uniquely, with W¢ the solution. The TT, L, and TR
parts are mutually orthogonal. Upon conformal mapping
of g,, and ¥2% (2) maintains the same form and the
equations guaranteeing transversality have the same
solution W2 after the mapping as they did before the
mapping. These conformal properties are demonstrated
in Sec. 3.

In Sec. 4, we discuss application of the TT-decomposi-
tion to the initial-value problem. In Sec. 5, the decompo-
sition is written in terms of orthogonal projection
operators on the space of symmetric tensors. Deforma-
tions of conformal Riemannian manifolds are treated in
the final section. In the Appendix, we show that when
symmetries are present, one may readily construct
from a given TT tensor others that are automatically
TT.

2. TRANSVERSE—TRACELESS DECOMPOSITION
We define /25 in accordance with (2) by

ViR = yee —Fyger — (LW, )

Let us suppose that both y¢¢ and g,, are C® tensor
fields. For concreteness, we work here with tensors
rather than with tensor densities; one need only multiply
through by an appropriate power of g1/2 for the densi-
ties. We note that the trace condition

gab ‘p%’lf‘ =0 (8)

is satisfied by construction. The transversality require-
ment

Vo ¥4t =0 ©)
leads to covariant equations for the vector field Wa:

DW)e = —V, LW)> = -V, (2t — 3 pgeb).  (10)
Notice that only the divergence of the ¢frace-free part of
¥2% enters (10). As a result, it is helpful to introduce an
abbreviated notation, Define the algebraic operator A

that projects any symmetric tensor into its trace-free
part:
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MGGyl = (60705 — 3 870 J Yl = Yab — § ygad. (11)

Also, let the divergence of /2% be denoted by V - ¢ .
Then (10) assumes the abbreviated form

DW=—V ' LW=—-V" Ay, (10%)
Let us now discuss the basic properties of (10). The
operator D is linear and second order as we see by in-
spection. Moreover, as we show below, this operator is
positive-definite, Hermitian,21 and its “harmonic” 22
functions are always orthogonal to the source (right-
hand side) in (10). Thus (10) will always possess solu-
tions2 W unique up to conformal Killing vectors (see
below). These solutions can be obtained by the eigen-
function method, assuming that D possesses a complete
set of orthogonal eigenfunctions. We expect the spec-
trum of D to be discrete for closed spaces. If not, we
assume its eigenvalues do not have zero as an accumu-
lation point.21 The operator inverse to D, D1, therefore
exists and we may write

W=D1[-V-Ay]. (12)
To show that D is positive definite, we multiply (DW)¢ by

W,, form the global scalar product, and integrate by
parts to show

(W,DW) = 3 (LW, LW), (13)
where
LW, LW) = [y v, (LW),,(LW)et = 0. (14)

Thus D is positive unless LW = 0, a case discussed be-
low. That D is Hermitian follows from a similar argu-
ment in which one integrates by parts twice to find

(v,ow) = DV, W) (15)

for any vectors V and W,

The right-hand side of (13) can vanish only if LW = 0.
This means either W = 0 or W = conformal Killing vec-
tor (CKV) of the metric. The condition for a CKV is, of
course, not satisfied for an arbitrary (“conformally
wild”) metric. The condition for a CKV is given by
Lw€a = 0o0r

£Wgab =)‘gab (16)

for some scalar function A, where £ ;, denotes the Lie
derivative along W. Equation (16) is just

Vo Wy + VW, = g4 ,- (amn
Taking the trace of both sides, we find

A =5V, we. (18)
Therefore, W is a CKV if and only if

Vewb + VoWe — 3 geby We = (LW)e? = 0. (19)

It follows that the only nontrivial solutions of DW = 0
are CKV's, if they exist. Hence the nontrivial “harmo-
nic” functions of D are CKV's. We shall now show that
even if these “harmonic” solutions exist, they are al-
ways orthogonal to the right-hand side of (10) and, hence,
can cause no difficulties in solving equation (10) by an
eigenfunction expansion.

Denote the CKV's by W2 = C¢, where by definition
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LC = 0. Form the scalar product of the right-hand side

of (10) with C and integrate by parts to find
—V-AY,C)=3(Ay,LC)=0. (20)

Hence the source is in the domain of D71 and D-1 gives

the solution of (10) even in the presence of conformal
symmetries.

The above results also show that the solution of (10)
must be unique up to CKV's. However, since only (LW)2®
enters in the definition (7) of 4%, CKV's cannot affect
vir-
The orthogonality of Y25, (LW)2?, and Y geb is easily
demonstrated. We see readily that 3 gpg"" is p01ntw1se
orthogonal to (LW)4® and to 2%, as (LW)4b and 42 are
both trace-free. To show that Y22 and (LV)?® are ortho-
gonal for any vector V and any TT tensor, we have only
to show that

(Lv, IPTT) =0, (21)
which follows readily using integration by parts, Gauss's
theorem, and V* 71 = 0. We conclude, therefore, that
the decomposition defined by (7) exists, is unique, and is
orthogonal. The properties of (7) under conformal
mappings of g,, and ¥¢? are the subject of the next
section.

One can further decompose the vector W¢ uniquely into
its transverse (f) and longitudinal (I) parts with respect
to the metric g,,. This splitting is orthogonal, as in (1).
But W, and W, themselves “mix” under the conformal
transformations defined in the next section. In any event,
since this further splitting is well defined, we see that

an arbitrary symmetrlc tensor field can be split into a
sum of pure spin-two (TT), pure spin-one (W,) and spin-
zero (g,, %% and V' W,) parts.

Also, it is easily verified in this procedure that a given
tensor that is already TT has no L or Tr parts;a pure
L tensor has no TT or Tr parts;and a pure Tr tensor
has no TT or L parts.

3. CONFORMAL TRANSFORMATIONS

Understanding the conformal properties of (7) is of
great interest in itself and is essential in the applica-
tion of these results to the gravity initial-value problem
(Sec.4). A space conformally related to (M, g) is (M,2),
where

grab=¢4gab' (22)

Therefore, we have for the connection coefficients

T,,2=T,,2+2065V,In¢ +62V, In¢p —g,.V* Ing),
(23)

with ¢ (x) an arbitrary real positive scalar function. The
freely given tensor y%%, which is to be decomposed, will
also be mapped conformally by the transformation

Eab - ¢—10lpab.

Thus, on (M,Z) we will decompose ¢~10yab not y2? it-
self. We shall prove that decomposing ¢~10y2% on

(M, g) is completely equivalent to decomposing 2% on
(M,g),for an arbitrary choice of ¢(x). This fact is of
essential importance in the application of (7) to the
gravitational initial-value problem. The choice of (24)
is not arbitrary, but is dictated by the form of (7), as we
shall see below. If 2% were a tensor density of weight

(24)
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one, we would use in place of (24),y2% = ¢~4y4%, If it
were of weight 5/3, we would have ¥2% = 2%, This fol-
lows from (24) and g1/2 = ¢6g1/2, These cases are also
important in the initial-value problem.18

Returning to the tensor case, we rewrite (7), using Eqgs.
(22), (23), (24), to obtain

Wik = pLO@er — 1 PF) — (¢

where ¥ =2, ,¥°%.
tudinal part, (LW)4?,

(25)

We now wish to transform the longi-
Substitution of (22) and (23) into

(3) gives
(LW)ed = p4(Tewb + Jowe — %grab§c we) = ¢4(fW)ab,
(26)
or
(Iw)ee = p~4(LW)*". 27

By using (27) and multiplying through by ¢~10, (25) be-
comes

$710pRL = B0 — 550 %) — ¢ B(LW) 0. (28)
Let us put 79% = ¢-10y22 . We note that
g—abTab =0 (29)

by construction, Furthermore, T 2 will also be trans-
verse on (M,g) provided V,T 2% = 0, or

—V,[p8(IW)et]) = —V, @b — 3 Ygeo). (30)

However, for any choice of ¢, this equation for the “vec-
tor potention” W¢ is already satisfied by the same vec-
tor We that satisfied (10)! This statement is proved as
follows: The left-hand side of (30) is simply

¢~8[— V,(LW)a® + 6(LW)2>V, Ing]. (31)

Since In¢ is a scalar, we have V, In¢ =V, In¢p =9, Ino.

Moreover, using (22), (23), and (27), we have

— T, EW)at = — ¢4V, (LW)eb + 6(LW)?*V, In¢].  (32)

By using (31) and (32), the left-hand side of (30) becomes
— ¢ 10y, (LW)eb (33)

From (22), (23), and (24), the right-hand side of (30) be-
comes

— ¢-10§7b(wab __ % wgab).

It is just this last result that uniquely dictates the con-
formal transformation (24) on y2%, From (33) and (34)
we see that (30) implies

(34)

— V,(LW)2l = — v (et — 5 ygeb),
which is just Eq. (10). Conversely, Eq. (10) implies (30),
so that (10) and (30) are completely equivalent for any
choice of ¢ and, therefore, have precisely the same solu-
tion We (x) The “harmonic” functions of the operator

— V,[p 6(LW)2?] are precisely the same as those of
—V,,(LW)‘”’ = (DW)4,because — V,[¢p 6(ZW)2t] is a
positive-definite operator which can only vanish if

We =0 or if W2 = CKV of Z,,. Since (LW)% = ¢ 4(LW)4,
we see that (LW)2® = 0 if and only if (LW)2® = 0, This
is not surprising, as it only says that if W2 is a CKV of
£.5,then it is also a CKV of any conformally related

(10)



460 James W. York Jr.: Conformally invariant orthogonal decomposition 460

metric, as one might expect. That is, the condition for a
CKYV is conformally invariant,

Hence, we identify 7%% with {25, yielding the result

T
vt =¢710vq1. (35)
Equation (21) may now be written
Yk = @0 — 550 Y) — ¢T6(LW)e. (36)

We see that the longitudinal part of 4? is simply
%‘f” — (fW)ab — (P'B(EVV)“I’ — ¢-10(LW ab (37)

In summary, given 2% on (M, g), we decompose it by
means of

Yed = whh + i + gy, (2)
with 22 and ¢22 given by (3), (4), and the solution of

(10). On a conformally related manifold (M, g), the ten-
sor y2% = ¢~10 2b decomposes in the same way:

vet = YRk + UE0 + Y, (38)
where

gab = ¢ 10yzh, (35)

Yol = p10yel - (37)

Y4l = ¢ 10ygl (39)

with the vector W2 determining the longitudinal part being
the same for ¥4¢ as for y4°.

One can see from the above that the form of the decom-
position may be viewed as being determined by confor-
mal invariance, for we know without performing a de-
composition that if a tensor is TT with respect to a
given metric g,,, that ¢~10 times the tensor will also
be TT with respect to the conformally transformed
metric ¢%g,,.18 It is actually this latter observation
whose significance led to the present method of decom-
position. In particular, one can see that the form for
the longitudinal part is crucial because of (27).

4. INITIAL-VALUE PROBLEM OF GENERAL
RELATIVITY

Because of its conformal properties, the decomposition
(7) is ideally suited for use in the gravitational initial-
value problem. For simplicity, we shall first describe
Igr)incipally the case involving vacuum gravity fields
Yr  =0.
uv

The initial-value problem is to construct a spacelike
Riemannian three-manifold (M,g) and a symmetric
tensor density of weight one, 726, such that

Vbﬂ“b - 0, (40)
g2 (r,,meb — 3 72) — gl/2R =0, (41)

where R is the scalar curvature of (M,g). The confor-
mal approach to this problem is to solve (40) in a con-
formally invariant manner, then to choose the conformal
factor ¢ in such a way as to satisfy (41), Equations (40)
and (41) are the Gauss—Codazzi equations giving neces-
sary and sufficient conditions for the embedding of

(M, g) with second fundamental tensor

Kab =g_1/2 (% ngab - ﬂqb) (42)
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in a spacetime satisfying Einstein's equations 4R ,=0.
For global analysis of this problem, it is convenient to
convert (40) and (41) into second-order elliptic partial
differential equations.

Here let us treat the case where (M, g) is to be embedded
in such a way that its volume “Hubble parameter” is
constant on the surface. The specific variablel! which
has proven to be of fundamental significance for this
and other purposes is

r=2g125=%K, (43)

which measures the rate of change of the local volume
elements of (M,g) per unit volume, per unit proper time,
i.e., per unit proper distance orthogonal to the surface.
The “maximal” case is 7 = 0, but in general we simply
assume that 7 = const.,i.e.,V,7=293,7 = 0 on (M,g).

In this case (40) can be written as

Vp(m2b — 3 7gat) =0 (40")
since by hypothesis V27 = 0. Thus (36) requires that we
construct a TT tensor density o2® = 79 — $7g2%, For
this purpose, we give arbitrarily a tensor y4° and con-
struct its TT part as above by solving (10) for W2, We
then set 026 = gl/2y 88,

Of course, the variables g,,,0¢% will not in general
satisfy (41). However, we now map them conformally
onto new variables which do satisfy (41),i.e., such that

gv2(m,, e — 372) - gl/2R = 0. (44)
We first note that

mab = gab 4 L gl/2gab ¢ (45)
which follows from the definition of 02% and 7. We know
that the transformation 6 2% = ¢ 40 2% preserves the TT
character of 0 2%, so that

7eb — ged + %51/2@11:7 = ¢ 4ot + % p2gl/2gedbr  (46)

will satisfy (40) in the form V,72% = 0. Substituting (39)
into (37) and using the well-known formula

R=¢"4R +8¢5A0¢, 47
with A¢ = — g29°V,V, ¢, we obtain the equation determin-
ing ¢:

(8A +R)p =M™ — § 7295, (48)

where M =g"1g,.8,,0%% 04, Equation (48) is a quasi-
linear elliptic equation determining ¢(x). All of its coef-
ficients involve only known or given functions, so it is
not coupled back to the momentum constraint ¥,7¢¢ = 0,
the solution of which, as has been pointed out, is a con-
formally invariant problem, when 7 = const.

Quasilinear elliptic equations such as (48) are discussed,
for example, in the treatise of Ladyzhenskaya and Ural'
tseva.23 The existence of solutions, particularly real
positive24 solutions 0 < ¢ < ©, depends to a large ex-
tent on the detailed nature of the nonlinear terms and
the possible values of their coefficients. For the parti-
cular form exhibited by (48), N. O'Murchadha and the
author25 have classified all cases of physical interest.
For example, we have shown that solutions ¢, such that

0 < ¢ < © on M, exist for any M > 0,7 = 0,and for any
choice of the initial metric g,, on a closed C* manifold.
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The case 7 = 0 is discussed below. It is exceptional
only for closed manifolds. For asymptotically flat (open)
spaces, existence of solutions has also been demon-
strated. Moreover, for (48), we have shown that the solu-
tion is unique for closed or open spaces. (In the asymp-
totically flat case, the value of ¢ at infinity must also

be specified, of course.) Together with the TT-decom-
position, these results give a highly satisfactory descrip-
tion of the initial-value problem for the vacuum gravita-
tional field. The same conclusion holds for the gravita-
tional field with sources, described below.

The case 7 = 0 is exceptional for closed spaces and it
is worthwhile to see why this is true. We shall see that
if one chooses an initial metric with R < 0 everywhere
on M,no solution of (48) exists if 7 = 0. Of course, the
set of configurations with 7 = 0 is of “measure zero” in
the full configuration space § X {possible choices of 7}.
Nevertheless, the discussion of this case sheds light on
the meaning of the conformal method in general. Let us
first, then, examine the conformal properties of (48) it-
self,

Had we started not from g,,, but from any other metric
g, = v%g,, in the same conformal equivalence class
as g,,, we would of course have 073% = v~4 o2}, The ana-
log of (48) would be of the same form:
(847 + R") ¢’ =M ()7 — § 72(¢p")5, (49)
where M’ = v"129M, 7' = 7,and ¢’ = ¢pv~1, Note that
(8 A + R) is just the conformally invariant scalar Lap-
lacian, so the fact that (48) is itself conformally form-
invariant is not surprising. From this we see that the
solution of (48) admits the conformal “gauge” transfor-
mation ¢’ = ¢v -1, Therefore, the uniqueness of solu-
tions to (48) for given conformal equivalence classes of
initial data is only uniqueness modulo this gauge beha-
vior. It is clear, however, that the final metric g,, and
momentum GT“{? are themselves unique with respect to
the given conformal class of initial data. Thus,

gab = ¢4gab = (¢I)4glab) (50)

54 = 970t = @0y, )
The conclusion is that the complete set of initial value
equations for W2 and ¢ is conformally covariant. Their
solutions transform by the rules We = We,¢'= ¢v 1,
From these solutions one obtains a unique initial-data
set?ahia'g'll‘,"r'

We now return to the case 7= 0,91 > 0. We see from
(44) that R must be positive on all of M. If we choose an
initial metric such that R(g) < 0 everywhere on M, then
if a positive ¢ satisfying (48) exists, it must map from a
space with R < 0 everywhere to one with R > 0 every-
where. However, it is easy to show that no such mapping
can exist for M closed. From (47), we have

8A¢ = —R¢ + R¢5. (52)
Integrating (47) over a closed M gives
0 = f,v,(— Rp + R¢5), (53)

which cannot be satisfied in the present case.

However, the argument in the case 7 = 0 does not apply
to asymptotically flat (open) spaces, as one cannot there
discard the gradient of ¢ at infinity. In faet, this very
boundary integral determines the mass-at-infinity of
the gravitational configuration.26
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What this simple argument also demonstrates is that,
whereas the scalar curvature is not a conformally in-
variant object in a local sense, globally a uniform sign
of R over a closed M is conformally significant. That
is, if R has one sign only on M and if R also has only one
sign (which is not true, in general, if 7 # 0), these signs
must be the same.

This argument is closely related to Yamabe’s theorem:27
Every compact C* Riemannian manifold of dimension

23 can be conformally deformed to a C* Riemannian
structure of constant scalar curvature. Let the constant
be called k. Then sgn(k) provides a convenient confor-
mally invariant “index” for conformal equivalence
classes of (closed) Riemannian manifolds. For the ex-
ceptional case 7 = 0, the conformal classes with sgn(k) =0
and sgn(k) == — 1 are here ruled out; whereas, if 7 # 0,
they are not. For asymptotically flat spaces, no classifi-
cation such as that provided by Yamabe's theorem is
possible,

For acloseduniverse, 7 = 0 corresponds to the moment of
maximum expansion. According to the argument above,
we have the result that a closed vacuum gravitational
configuration with sgn(k) = — 1 or sgn(k) = 0 cannot
correspond to a moment of maximum expansion. Ex-
amples of closed vacuum universes with no moment of
maximum expansion are known.28 These universes ex-
pand for all time at an ever-slowing rate which only
approaches 7 = 0 asymptotically as the volume approach-
es infinity, which means the closed space is becoming
effectively “open”.

Conversely, at a moment of maximum expansion, sgn(k) =
+ 1ifOM >0, If =0 and M = 0 (vanishing shear), we
have a “moment of time symmetry”,29.30 for which
sgn(k) = 0 is the only permissible case if M is closed.

To conclude this part of the discussion, we repeat that
for 9N > 0, only cases involving 7 = 0 everywhere on M
lead to any restrictions on the choice of conformal equi-
valence classes of initial data in the construction of solu-
tions to the constraint equations.

In general, we see that when 7 = const., (40) and (41)
split into two separate problems. We give freely (M, g)
and Y22, We solve the linear elliptic Egs. (10) for W<,
and thereby construct 22, Substituting g,,, o.l?.l?, and 7
into (41), we find ¢. The final initial data set satisfying
the complete set of constraints is therefore (M,g) with
Z.p = 0%8,,,and 74% given by (39). This means that the
initial-value problem on surfaces 7 = const.is an un-
coupled elliptic second-order system of four Egs. (10)
and (48) for four functions W2 and ¢. Of these, the three
Egs. (10) are linear and (48) is quasilinear.

The conformal treatment of the initial-value equations
can be generalized to cases where 7(x) # const.is a
prescribed function, In place of the momentum condi-
tions V,0%% = 0 for 7 = const., one has
vbo-ah = %\gl/ZVGT’ (54)
where 02% is still trace-free. We can view this problem
as requiring the construction of a traceless tensor in
purely longitudinal form (LZ)%%, Equation (54) deter-
mines (LZ)2%; however, this procedure is not indepen-
dent of ¢. Equations (54) and (48) are now coupled. On
such surfaces the gravitational initial variables are not
pure spin-two objects. The presence of V27 introduces
effectively a vector part Z to the complete set of initial
variables. Of course,to the solutions 04% of (54) itself,
may always be added a free (unconstrained) field in the
form of some TT-variable. So, even in this case, TT
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momenta describe free gravitational fields (“waves™).
Moreover, regardless of the presence of Vet # 0, the
intrinsic conformal geometry of the surface still corre-
sponds to the pure spin-two part of the field. This is
true because the three-dimensional conformal curvature
tensor is identically TT regardless of the value of 7 on
the surface. Thus, the vacuum gravitational field be-
haves somewhat like an electromagnetic field with
sources when 7 # const.

We now wish to point out how matter or other field
sources enter (48). The form of (44) is32,33
ZV2(7,, T — 272) —gV2R = — 167g¥/2 T}, (55)
where Tx = T#,u’u,, T#, = matter tensor,and u# is the
unit timelike four-vector normal to the surface. Physi-
cally, T 5 is the positive-definite scalar measuring the
mass or energy per unit proper three-volume on the
surface. The key question here is: Can T § itself be
freely specified, or only specified up to some conformal
factor ? Both dimensional arguments and arguments
based on the free electromagnetic field32 as source
point to the fact that one can only give T% up to a con-
formal factor. Thus, for example,the conformal proper-
ties of the electromagnetic field coupled to gravity
using a “3 + 1” formalism identical to that of the pre-
sent paper show that one may freely give T, where

= ¢~8Tx. This choice is consistent with the de-
couplmg of the momentum and energy constraints (see
below) and with the fact that the electromagnetic-initial-
value problem on the surface must simultaneously be
satisfied.

In place of (48), one finds32.33

(8A+R)p =TMp™7 — § 1245+ 167 TE 973, (56)
where all coefficients are known (see below), and where
the sign of each coefficient on the right-hand-side is
known. Again, one can show25.32 the existence of a
unique solution for all conformal equivalence classes of
initial data, except those with 7 = 0 have to be treated
separately, as above. Choquet Bruhat34 treated the

case with 7 = 0 and T% = T}, i.e., the energy density
scalar completely specified in advance. However, this

is not consistent with massless, integral spin sources
nor with dimensional analysis. It is an attempt to spe~
cify more data about the sources that is consistent with
the physics of gravity coupled to other fields. Not sur-
prisingly, she found a number of serious restrictions on
the existence and uniqueness of solutions for certain
gravitational-matter configurations, Understanding these
restrictions more deeply could be important in further
elucidating the physical content of initial-value problems
with sources.

We have already indicated how matter sources enter (48).
Likewise, sources may be inserted into the momentum
constraints in the form11.32.33

V,0%% =8ngl/2ged Ty (57)
when 7 = const, Here G = ¢ =1, T} is the matter ten-
sor,and T; = B} u,Th. The factor B projects onto the
surface for whlch u“ is the unit normal four-vector.
The constructlon of a trace-free ¢ 2% satisfying (57) is
again a conformally invariant problem rot coupled to
(48) (just as before) if we conformally map T} by the
transformation32.35

T} > Tr=

¢ 6T (58)
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This means that here g1/2 T} is freely specifiable, not
T, itself. Effectively,one may only prescrlbe the direc-
tional properties of the matter current T,, but not its
absolute magnitude. Observe that Tb does not enter (56);
only the solution o 2% of (54) enters (56) and, of course,

. So none of the discussion of (56) has to be altered
in th1s generalized procedure. Therefore, the inclusion
of matter currents occasions no difficulties. Again, we
may allow 7(x) = const., but the equations then become
coupled, introducing, however, no difficulties in principle.

Lastly, we mention that there is an elliptic “sandwich”
version of the initial value problem.3¢ Here, one gives
freely, on two nearby slices 7, = const., 7, = const.,and
two infinitesimally different conformal metrics. One
finds ¢ and W by a method similar to our discussion
above. The proper orthogonal distance N between the
two surfaces is determined by an elliptic equation!l for
N, resulting from the demand that the 7's be two infini-~
tesimally differing constants on the two surfaces. The
“sandwich” problem becomes five elliptic equations for
the five variables ¢, W2, and N. The W2 equations are
linear and the ¢ and N equations are quasilinear.
These five equations are coupled. Coupled elliptic sys-
tems are very hard to analyse, no sufficiently powerful
mathematical theorems being readily available, How-
ever, this particular set has simplifying features that
permit this “conformal thin-sandwich” result to be
analyzed.

5. PROJECTION OPERATORS FOR THE
TT-DECOMPOSITION

In this section, following a notation close to that of
Berger and Ebin,7 I shall denote the operators relevant
to the TT-decomposition by

@y)e=—V,We — % yget) = — [V (Ay)]e,

where 4% is a symmetric tensor. Omitting indices, we
write the solution of (10) as

(59)

W =D1[5y]. (60)
The longitudinal part of the tensor ¥ is written
Yy = LW=LD1[5y]. (61)
The trace part is given by
L= (I =AMy, (62)
where I denotes the identity operator. Therefore,
Wpp = (A~ LD13)y. (63)

The appropriate projection operators acting on ¢ are
thus

Ppp=A— LD15, (64)
P, =LD1§, (65)
Pr,=I—A, (66)

where I = Pqyq + Py, + Pp,..

The space of pure trace tensors may be written37
A-1(0). The space of longitudinal tensors may be written
L(V1),where V1 denotes the space of vectors on M. We
now seek a further characterization of the spaces of TT-
tensors as defined in this paper.
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First we note that the operator L* adjoint to L is L*=13 3.
The vector “Laplacian” D of equation (10} is given by

D = 5L, (67)
The dimension of the kernel D"1(0) for this operator
equals the number of linearly independent conformal
Killing vectors admitted by (M,g). This dimension is
conformally invariant. Its maximum value in an N-
space is 3(N + 1)(N + 2). The maximum is achieved if
and only if the space is conformally flat.

Now we define the fensor “Laplacian” A by

= L§. (68)

This is a linear, second-order, elliptic, positive-definite
operator which vanishes if and only if the tensor it acts
on is TT as defined in this paper. To see this, note that
W,ay) =2(6y,5¢), (69)
which vanishes if and only if 53 = 0. We can have
0y = 0 if  is TT or if the tracefree part of y is trans-
verse. However, according to our definition of TT ten-
sors, if the tracefree part is transverse, then the longi-
tudinal part must vanish and we have Y ;= AY, i.e,,
the tracefree part is the T'T part in this case. Hence, it
follows that the space of TT tensors can be written as
571(0) or A"1(0). It follows also that these kernels are
conformally invariant because the TT-property is pre-
served under the conformal mappings we have defined.
Therefore, one sees by virtue of their conformal proper-
ties an 1nterestmg “duality” between the vector operator
D = 6L and the tensor operator A = L5.38

Again following the notation of Berger and Ebin,? we
write the present splitting of the space of C® symmet-
ric tensor fields on (M, g) as

C=(S2) = A"1(0) @ L(V1) ® A-1(0), (70)

where the summands are orthogonal,

Using different operators than those we have employed
here, Berger and Ebin7 achieved an orthogonal TT de-
composition in the special case that R = const. Yamabe's
theoremZ27 should provide a link between their decompo-
sition and the one defined in this paper.

6. DEFORMATIONS OF CONFORMAL RIEMANNIAN
MANIFOLDS

Any infinitesimal deformation of a Riemannian geometry
may be represented by a symmetric tensor 6g,,, where
6 now stands for “variation,” not for the negative diver-
gence as in Sec. 5. Since any symmetric tensor may be
decomposed by our procedure, we may write

6gab - 6ga + (LW)ab + 3 gabg chd (71)

On the other hand, by definition, any small variation of a
conformal metric £, = (detg)™1/3 g,, must be trace-
free. Hence, the last term of (71) represents an infini-
tesimal conformal transformation which cannot affect
the underlying conformal geometry.

Consider an infinitesimal shift of coordinates x% — x2 —
W4, The change induced in ga,, is just

£y 8qp = (detg) V/3(LW),, .

Hence, the second term on the right of (71) denotes a re-
labeling of coordinates in the underlying conformal geo-

(72)
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metry and thus to no change in the intrinsic conformal
geometry itself. Thus,the only term of (71) correspond-
ing to a variation of the intrinsic conformal geometry is
5gIT. Therefore, every deformation in conformal super-
space § is represented by a TT tensor only, and con-
versely. Thus, in passing from one point of § to a neigh-
boring point, only TT-tensors need be considered.

There is a method of constructing TT tensors that does
not rely on any TT-decomposition as such, In three
dimensions, the conformal curvature tensor densityl8
is defined by

gab =1 (detg)1/3 (cefeagbm 4 eefbgam)veRfm, (73)
where €¢/¢ ig the unit alternating tensor density. If
08,5 = A& 4, then one can readily show that 8B4e® = 0.
Let ot = (detg) 1/3 a5, Then we also have GB,, =0.

Be® is identically symmetric and TT ,giving rise to the
conclusion that the conformal geometry represents the
pure spin-2 part of the full Riemannian 3-geometry, as
we described earlier.

¥ we construct from 2%.a conformally invariant scalar
density of weight one and integrate it over M, then the
functional derivative of this integral with respect to g,
will be automatically a TT density of a weight 1. The
weight of this tensor can be changed at will, of course.
As an example,

= 6/08,5 [y (BSBE/2d3x

is a TT tensor density of weight 1.3 It is worthwhile to
note that the functional derivation of a TT tensor density
of coordinate weight 1,as in (74), may be readily used to
prove that such an object must transform by the rule
g% = ¢4 pe® under a conformal mapping £,, = ¢%8,,-
Thus the tensor form tp = g"1/2 yab must transform as
Pih= ¢ 10928 as shown in Sec. 2.

et (74)
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APPENDIX: TT TENSORS AND SYMMETRIES

Let X* be a CKV of g,, and consider the tensor ¢ IT
By using the well-known rules for interchanging £, and
V s, 0ne can easily verify that

WIT =917 + 900 + £ TTY, Xe (A1)
is also TT with respect to g,,. Similar results hold for
t// and for different weights. Therefore although CKV's
do not show up directly in the constructmn of YI7,as we
explained, they do give automatically other TT tensors.

The transverse decomposition®.7 of a tensor T, is de-
fined by
Tab = TaTb + va Vb + vb Va’ (AZ)
for some unique V,. If the metric g,, possesses Killing
vectors Y (£, g,, = 0), then, similarly to the above,
Toh =Td + £¢ TS, (A3)
is also automatically transverse with respect to g,,.

These results relate, respectively, to the “stratification”
of §,and to the “stratification” of $.8
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The relationship between the Petrov classification of Riemannian space-times and the Debever-
Penrose principal null directions is developed in explicit algebraic terms.

1. INTRODUCTION

The Petrov classification of Riemannian space—~time in
terms of its algebraic properties at a point offers an
invariant (coordinate independent) description of aspects
of space—time.l The relationship between the Petrov
classification and the Debever—Penrose principal null
directions at a point of space-time was first given in
full by Penrose in his classic paper on the use of spi-
nors in general relativity.2 Subsequent articles and
papers3.4 have followed Penrose's treatment, which is
essentially geometrical and does not display an explicit
algebraic relationship between the two classification
systems.

It is our purpose in this paper to develop the relationship
between the Petrov classification and the Debever—
Penrose directions in explicit algebraic terms. We

show that the Petrov approach and Penrose's spinor
approach each leads to a fundamental 3 X 3 matrix, and
that these two matrices are related to each other by a
similarity transformation, Further, we give simple
explicit forms for the curvature eigenspinors in the
Penrose formulation and use these to classify the space-
times.

For convenience and simplicity, the analysis is carried
out for the case of a zero matter tensor. The nonvacuum
case is very similar, but the Weyl tensor must then be
used instead of the Riemann tensor.

2. THE PETROV CLASSIFICATION

Consider the Riemann tensor R, ,, which is antisym-
metric in p, v and in p, A, and is symmetric in the pairs
pv, pA.

We map the indices y, v, p, A onto indices 4, B by the
homomorphism

uy: 23 31 12 10 20 30]
[A 1 2 3 4 5 6l

In terms of A and E,R;B is a second order symmetric
tensor with indices running from 1 to 6,and it can there-
fore be written as a 6 X 6 matrix of the form

M N
Rﬁﬁ = I:NT le’ (1)

where M and @ are real 3 X 3 symmetric matrices and
N is a real 3 X 3 traceless matrix. We assume the use
of real coordinates and a space—time signature (+,—,
—,—). The form of (1) follows directly from the symme-
tries of the Riemann tensor, and R ;5 is isomorphic to

the tensor R, ;.
Raising the first index on R ;3 and employing a local
Lorentz coordinate frame leads to the form

M N
% :[— NT — Q]' @)
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For the vacuum case, the field equations lead to the
additional relations :
Q@ =—M,

N=NT, Tr{M)=0, (3)

In this case we therefore have the form

where M and N are both real symmetric trace-free
3 X 3 matrices.

We now introduce the dual of the Riemann tensor
*RuV = 3V —gRHY j€18%8g, gy, (5)

where €7608 ig the usual unit tensor density. The general
notation follows that of Ref. 5. We observe that mapping
K, Vs p, A t0 A, B as before and applying the field equa-
tions yields the form

wiy =[] ©
B M NI

This result may be derived easily by element-by-
element evaluation in the local Lorentz frame.

Thus, defining a self-dual tensor R (Y4, we have

M +iN —iM + iN)]

RMWA_= RA_ +i*R;‘—=[ 7
8 5 B Li(M +iN) M +iN ™

This can be written in the direct product form
R(DA [P B ip] PoJ ®)
= = = [b%]
B P P 3
where P =M +iNandJ=[1 +F]. Pisacomplex 3 X 3

traceless symmetric matrix and has ten algebraically
independent components,

The eigenvectors of R (+)4; are the direct products of
the eigenvectors of P and J, and the eigenvalues are the
algebraic products of those of P and J. For J, we have
eigenvalues 0 and 2 and corresponding eigenvectors
(1,—4) and (1,7). Thus,R ()4 has at least 3 zero eigen-
values. For the Petrov classification, it is necessary to
consider only the eigenvalues and eigenvectors of R ()4
constructed using the nonzero eigenvalue of J. These
eigenvalues of R (¥ Az may or may not be zero,

The Petrov classification corresponds to the following
simple set of statements about the eigenvectors and
eigenvalues of the matrix P:

(a) If P has 3 distinct eigenvectors and 3 distinct eigen-
values, space—time is Petrov Type I.

(b) I P has 3 distinct eigenvectors and 2 eigenvalues
equal, space—time is Petrov Type I-D.
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(c) If P has 2 distinct eigenvectors and 2 distinct eigen-
values, space—-time is Petrov Type II.

(d) If P has 2 distinct eigenvectors but has equal (and
hence zero, since P is traceless) eigenvalues, space-
time is Petrov Type II-N.

(e) If P has only one eigenvector, space—time is Petrov
Type III.

Equivalently, we can state the Petrov classification in
terms of the elementary divisors of P:

(a) If P has linear elementary divisors and 3 distinct
eigenvalues, the Petrov classification at the point of
space—time concerned is Petrov Type I.

{b) If P has linear elementary divisors and has 2 equal
eigenvalues, space—time is Petrov Type I-D.

(c) If P has just one linear elementary divisor and has 2
- distinet eigenvalues, it is Petrov Type II,

(@) If P has just one linear elementary divisor and 2
equal eigenvalues, it is Petrov Type II-N.

(e) I P has no linear elementary divisors, it is Pefrov
Type 111,

Finally, the Petrov classification is sometimes stated
in terms of the Segre characteristic of the matrixé P:

Type Segre characteristic
1 (1,1,1)

I-D ((1,1),1)
I 2,1)

II-N ((2,1)
I (3)

The Petrov classification provides a meaningful way of
categorizing space—times because it is independent of
the choice of coordinates used in setting up the Riemann
tensor. For, consider the coordinate transformation

%X — %, 80

—_ x x8
Rap = 3200 3% 3" g,y (9)
TS 5xp ax axY dxb

With the index mappings ﬁg.-}\ o4 {K-,g)):gd, the coordinate

transformation (9) can be written as a matrix trans-
formation of R:

RA,=TATHM RL,, (10)
where
— aT8 _ ’
74, =220 gpq Tu - 2O (11)
axP xr axy 9x8
We can write this as a matrix product:
R = TRT (12)

But, 7T = T4, TL, = 6= 68,. Thus T =T}, and T is a
similarity transformation on R. .

The eigenvalues and the number of linear elementary di-
visors of a matrix are unchanged under a similarity
transformation. Thus, the Petrov classification is in-
vaviant undey coorvdinale trvansformations.

The 3 X 3 complex matrix P is the fundamental matrix
of the Petrov classification. We will show that P is
related by a similarity transformation to another 3 x 3
complex matrix arising from a spinor approach, and
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thus either matrix can be used as the basis for the
Petrov classification.

3. THE SPINOR APPROACH

The classification of space~times in terms of the
Debever—Penrose principal null directions is most
readily approached using a spinor treatment. We will
follow the notation used in Refs. 2 and 3, where the proofs
may be found of many of the necessary spinor results
that we will quote and use here without proof.

Tensor and spinor quantities are transformed to each
other via the relationships

AB . — o AB v,
TAB p=0,4BTX 0%

. . (13)
Tr, =0*, 5 TAB0,¢0
where the quantities o, 43 satisfy the equation
0,4:0,5¢ + 0,40, 8¢ = g €45, (14)

The ¢'s relate spinor space to tensor space, and €458 is
a skew-symmetric metric spinor for the two-dimen-
sional complex spinor space, enabling spinor indices to
be raised and lowered. Spinor indices take on the values
1 and 2.

Equations (13) extend easily to any number of tensor in-
dices. In a tangent flat space with signature (+,—,—,—)
a suitable set of 0's consists of multiples of the Pauli
spin matrices, plus the 2 X 2 identity matrix,

To any second rank tensor F , there corresponds a
four-index spinor F, 5. If F,, is skew, F, ;5.5 can be
shown to have the unique spinor decomposition

Fascp= @Gac€sp + €ac¥ 55 (15)

where ¢ .. and Y5 are symmetric in their spinor indices.
Further, if F  is real it may be shown that Y5 = ¢;5.
Note that (15) differs from Penrose's definitions of ¢ and
Y by a factor of 2.

If we apply (15) to the Riemann tensor R, ,,, Which is
skew in both pairs of indices pv and pa, {‘he corresponding
8-index spinor may be shown to have the form

R, .x <7 Raspicipd = (Xapco€25€6a + €coPaséi€ss

+ €4pPiicp€a T €as€opXipca)  (16)

The symmetry of R“u
the symmetries on x:

pA in the pairs pv and pi leads to

XABCD = XBACD = XABDC — XCDAB' amn
In the vacuum case, applying the field equations leads
to the additional conditions

bascs =0 Xasco = Xapcw (18)
Thus, x 4zcp 1S folally symmetric in all indices, and
Eq. (183 reduces to the form

R yox < Bagpicéps = (X anco€55€6a T €€ coX £FGH)

(19)
The dual tensor *prk can be shown to have the spinor
equivalent form

* Xp L g P — ...
vap)\ > *R  ppicépi = P Xapcp€55€ca T €a€cpX ERGH) »
(20)
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Thus the tensor R(*),Jypx has the spinor equivalent form

R <« R(+) (21)

WP A AEBFCGDE = 2X ancD€ 5F€GH"

Using (13), we have explicitly

R ., =0 AEquBFo Coo,DH 2y, popespe gn).  (22)

or, raising the p and p indices,

R(+)pup)\ = gk AEOyBﬁopCGOADH(ZXABCDGEﬁ‘EGﬁ)' (23)

Since R+ #v , is antisymmetric in y, v and in p, A, we
write (23) in the explicitly antisymmetrized form

— T uVAB B %> CD

R(+)“upx = ZhY, px A epZn s (24)

XABCDEp}\CD
where in (24) we define Z#V,;and T, D to be

ThY = 1/VZ(or Eov F — v E ok F) e

.. . (25)
38 = 1/42 (0, ©60, 28 — 9,00 PH) e .
Now we again introduce the tensor index mapping
Py — A,p, A - B,as in Eq. (1). Bars distinguish the
matrix and spinor indices, and we have from (24)
R(+)AE= Z;A XAB 05 (26)

Now, from Eq. (8) we note that the upper left 3 x 3 sub-
matrix of R (+) 43 is the matrix P. Thus, if we restrict
the range of the 1nd1ces AandBtol,2 and 3, Eq. (26)
gives

PAE = EAABX 4B pZ P, (27)

where in (27),4 and B take on the values 1,2 and 3, and
A, B, C and D take on the values 1 and 2.

Equation (27) is an equation relating a 3 X 3 array, P, to
a4 x 4 array, x. In general, the four-index spinor will
have four eigenspinors, whereas the matrix P can have
at most three eigenvectors. Thus it would seem at first
sight that y is not directly relatable to the Petrov clas-
sification given earlier and based on the properties of
P,

However, since y is symmetric in all spinor indices, any
antisymmetric two-index spinor, z¢2, is an eigenspinor
of y, with zero eigenvalue, since

X aBcpZ P =0. (28)

In addition, it can be shown that any antisymmetric two-
index spinor can be written as a scalar multiple of the
skew metric spinor €43, Thus we need consider only
the symmetric eigenspinors y 42 of x that are at most
three in number and satisfy

XaBcpY P =Xy 45 (29)
Then, since y and x are both symmetric in their spinor
indices, the 4 X 4 system for the eigenspinors of x can
be written as a 3 X 3 system:

X, Yi=xvy, (30)
where (29) and (30) are related by
Y =911,

Yz——-ﬁylzzﬂym, Y; =555,
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and

X11 = x111n X1 =X51 = ‘/E)unz,

X13 =X31 = x11220 %22 = 2X11229

Xy3 =Xz, = ‘/7)(1222’ X33 = Xa222° (31)
Using (31) in (29) yields (30) by direct substitution. Thus,
the eigenvectors of the 3 X 3 matrix X are simply related
to and in one-to-one correspondence with the symmetric
eigenspinors of the four-index spinor, . Note that X is

a symmetric matrix, as is P, Equatmns (29) and (30)
may be related by the index mapping

A 11 (12) 22
[ B 1 12) ] (32)
i 1 2 3

and we may then write (27) in the form
PAE = ZAiXijEjE’ (33)

where now all indices run from 1 to 3 and both P and X
are traceless symmetric complex 3 X 3 matrices.
(Note: X is symmetric only if all indices are up or all
are down).

We now show that Eq. (33) is actually a similarity trans-
formation between P and X. Thus, either P or X may be
used in performing the Petrov classification in terms

of their eigenvalues and eigenvectors. Equally, because
of the relation between X and y, the Petrov classification
can be done using the symmetric eigenspinors and eigen-
values of .

The condition for (33) to be a similarity transformation
is

DA Ziz= 64z (34)
This is most easily checked by again using the local

Lorentz frame, in which the ¢ matrices entering the de-
finition of Z can be chosen as Pauli spin matrices.

Note that, since A and B range only over the values 1, 2,
and 3, the index 0 is not used in the set u, v, p,x. Thus
we need only ¢,,0,, and 05, for which we take the repre-

sentations
> 0y = l/w/_( (1)>

(35)

oy =13 ), =120 =

Using the definitions (25), we have

3 A.g BH .g BH
ap0V5t — v 4040, 4450, B — 0, Au0 BH),
(36)

Consider one term of this product. Using standard
spinor properties, we have

gV By A.g BH _ PQ . .gURF AS¢ . .g. BH
0RO VpT0 g0 B = 0l PRe p € 5 n0 PR e g0 A€ 550,

= Tr(opec_rxso"ec_r#e). (37

In (37) we have used o#P¢ = Gk 9P, and we note that since
the trace is taken in spinor space, tensor indices may be
up or down. To evaluate the trace, we use the fact that
with the representations of the o-matrices used in (35),
€0,€=0,.

Thus,

Tr({c €6,€0vedke) =

v
K Tr(opo)\c oK),
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Now using the relation, well-known for the Pauli spin
matrices,

0,0, = 30, + iNZ €,,,0, (38)
we find
Tr(o,0,0% #) = 3(6,,647 — 6 8 + 8 46,"). (39)

Performing the same calculation for each term of (36)

and combining the results, we find
TAZig = (66— 6,15,%) = 845, (40)

Note that since we require that 655 =—1when4 =

(u, v) and B = (v, 1), Eq. (40) is the appropriate form

for 84;. Equation (40) confirms that the relation (27) is

indeed a similarity transformation.

4, THE EIGENSPINORS OF x AND THE
DEBEVER-PENROSE DIRECTIONS

We have shown that the Petrov classification may be
described in terms of the properties of a complex trace-
less symmetric matrix P, and that this classification

is invariant under a similarity transformation on P.
Further, we have shown that P is related by a similarity
transformation to a matrix X, and that the eigenvalues
and eigenvectors of X are in one-to-one correspondence
with the symmetric eigenspinors and eigenvalues of the
wholly symmetric four-index spinor x. It now remains
only to determine the symmetric eigenspinors and eigen-
values of y and relate these to the Debever—Penrose
directions, in order to complete the relationship of the
Petrov classification to the Debever—Penrose descrip-
tion of space-time.

First, since x ,5.p 18 symmetric in all indices, it follows
that there exists a unique decomposition of y into a
symmetrized product of one-index spinors éee Refs. 2
and 3), thus

X ascp = R(M & Spy (41)
It can also be shown that each single index spinor % , de-
fines a null vector in Riemannian space, thus the spinor
x in general defines a set of up to 4 such null vectors.
To relate these null vectors, which are the Debever-
Penrose principal null directions, to the Petrov classifi-
cation, we need to obtain the symmetric eigenspinors of
X apcp in terms of the single index spinor factors of .

To find these eigenspinors, let us consider the product
X apcpRtémP). This can be written

X ancpk CmP) = [k m p57((Spy + k(aV5)M(cSp)
T RaSsyM(c?p) T 7" 5)R(cSp)

+ SMpyk(cTp) + T(aSmyR(M py R CmD). (42)

Noting that k ;54 = ks, — ko8, = — s k4, etc., we write

k ,s4 as k.s and contract on C and D in (42) to give

X ancpRCmD) =k mpy (v ks.m + v.ms.k)
+ Rk rgymiks.m + kR Spymakr.m + v mpym kk.S
+ s(ampym . kk v + v, Sgym _ kk_ m. (43)
To simplify (43), we need the following spinor identity:

22 Pk ,mgy0cSp;) = 0. 44)
P
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This indicates that the sum over all cyclic permutations
of the 1-index spinors %, w,# and s, symmetrized and
antisymmetrized as indicated, is identically zero.

It is most easily proved by symmetry arguments. In
particular, taking C = 1 and D = 2, (44) gives

%} P(k(AmB)T,.S) =0. (45)

To make use of this result, we regroup terms in (43) and
write
X aBcp® CmP) =k m gy (r ks m + v _ms_ k)

T raSpym Rk om + m _k(k,7pys m + S(aMgyk.¥)

-+ mhk (k(ASB)VAm + 7’(A'mB)kAS). (46)

Now applying (45) with the symbols ordered as &, v, s,m
to the third term of (46) and applying it with the symbols
ordered as k, s, 7, m to the fourth term of (46), we find

X ancpk{OmP) =k myylr ks.m + v ms_k)

+ 37 uSpym kkom.  (47)
Similarly, we find
X ancp? D) =748 gy (¥ ks m + v ms k)

+ 3k ,mgys vr.s.  (48)

Taking linear combinations of (47) and (48) we at once
obtain the eigenspinors, as

Vi =R My ¥ S ¥ Spk m 49)
with eigenvalues
AE =2 ks .m + v ms_ k) F 6k mr_s, (50)

Since we could have equally well have used k(¢r2) or
£ (CsD} in equation (42), we find as the full set of symme-
tric eigenspinors

Vit = Ram py7 .8 2748k m,

Vot =R pyM.S £ mS k.7, (51)
V3t = RS T.m L ampy ks,
with corresponding eigenvalues:
A = 2(r.ks m + r.ms k) F 6k mr s,
AF = 2(m ks v +m s k) F 6k ym.,s, (52)

A =2(r km. s + v sm k) F 6k sy m.

The form of (51) suggests that there are six symmetric
eigenspinors, but using (45) again reveals at once that
Yt =¥3 ¥y =yg,andy, = —yg. We thus have at
most three symmetric eigenspinors, which we choose
asy, =y, ¥, =95 and y; = y5, with corresponding
eigenvalues Ay, A," and A5t

If now k,m,7 and s are all distinct one-index spinors,
then we have three independent symmetric eigenspinors
of y, and four distinct Debever-Penrose principal null
directions,

However, since k,m, 7, and s can coincide in various
ways it is necessary to examine the behavior of the
symmetric eigenspinors (51) and their eigenvalues (52)
in such cases. The possible distinct situations that can
arise are the following:

(a) k,m,v and s all distinct. We have 4 independent
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Debever—Penrose directions. The symmetric eigen-
spinors of x and their corresponding eigenvalues are all
distinct, thus P has 3 eigenvalues and eigenvectors and
the space is therefore Petrov Type I.

(b) Ifk =+ = m = s,2 Debever—Penrose directions
coincide. In this case, k2. = 0, so the symmetric eigen-
spinors are

Y1 =kampy? St raSpy kM,

53
Y3 ==Yy =R kpym.s (63)

and we have A, = A5 # A,.

Thus we have 2 eigenvalues and 2 symmetric eigen-
spinors, hence P has 2 distinct eigenvalues and eigen-
vectors and the space is Petrov Type II.

(c) Ifk = =m # s,3 Debever—Penrose directions
coincide. In this case we findy; =y, =y3,and A, = x,
= X3 = 0. We have one symmetric eigenspinor, P has
only one eigenvector, and the space is Peirvov Type IIl.

(d) Ifk =7 # m = s, the Debever-Penrose directions
coincide in pairs. In this case, some care must be taken
in using (51), since the forms of the eigenspinors be-
come degenerate. It is then easier to rederive the eigen-
spinors in this case directly from (47), and one finds the
3 symmetric eigenspinors

Yo =k (akp)

Y1 =kaMg), Y3 = W Mp)
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and
Ay =Xz = Ay,

Thus x has 3 distinct symmetric eigenspinors, but only
2 distinct eigenvalues. Then P has 3 eigenvectors and
2 eigenvalues, and the space is therefore Petrov Type
I-D.

(e) If k =7r =m = s,all 3 Debever—Penrose directions
coincide. In this case, we have the symmetric eigen-
spinors y, = k(4R 5y andy, = k(,jg), Where jp is any
1-index spinor independent of % ,. The eigenvalues are
zero. Thus P has 2 eigenvectors and zero eigenvalues,
and the space is Petrov Type II-N.

A {final case must be added for completeness. If y = 0,
space is flat, anything is an eigenspinor and there are
no preferred directions.
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Exact nonplanar solutions of the classical relativistic three-body
problem*
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It was shown recently by Havas that for a Newtonian system of three particles there exists a class of
exact solutions which is nonplanar, such that the particles revolve with constant angular velocity in
circular orbits in parallel planes. Such motions are possible for central forces which are arbitrary
functions of the mutual separations, provided that the forces are repulsive between one pair of par-
ticles and attractive between the two other pairs (which for Coulomb forces corresponds to two
like charges and one unlike one). In this paper, it is established that such motions are possible also
for relativistic three-body systems with time-symmetric electromagnetic or mesic interactions; they
reduce to the Newtonian solutions in the appropriate limit. Beyond this, there also exist exact
relativistic solutions with the same orbits which have no nonrelativistic counterpart. These include
solutions with all electric charges of the same sign, as well as solutions with all three particles on the

same side of the axis of rotation; degenerate cases include planar and nonplanar two-particle solu-

tions and a one-particle circular solution.

. INTRODUCTION

In Newtonian dynamics, the problem of two bodies inter-
acting through central forces depending on the mutual
separation alone can be reduced to a one-body problem,
which can always be integrated. The problem of n > 2
bodies, on the other hand, cannot be solved in general
except for the case of the oscillator potential. Apart
from this, the only interaction which has been studied
extensively is the Newtonian gravitational one. For this
case, some exact solutions of the three-body problem
were found by Euler and Lagrange two centuries agol;
apart from generalization ton > 3, no further exact
solutions are known. The known solutions2 are all homo-
graphic, i.e., the configuration remains similar to itself
for all time. Viewed from an inertial system in which
the center of mass is at rest, they are either homothetic
(i.e., the configuration is dilating without rotation), or
planar (i.e., all » bodies move within the same fixed
plane).

The general problem of homographic motions of a New-
tonian system of particles interacting through central
forces which are arbitrary functions of the mutual sepa-
rations has been solved recently by Havas3; the special
case of Coulomb interactions had been studied earlier by
Mintz.4 For any type of interactions for which the forces
between pairs of particles are not all attractive or all
repulsive, it is possible to have homographic motions
which are not planar. In particular, it is possible to
have nonplanar motions which are flat, i.e., the con-
figurations is such that for every ¢ there exists a plane
I1(¢) containing all #» bodies, and stationary. Then II is
rotating with constant angular velocity about an axis
contained within it. For the special case of three par-
ticles, and forces which are repulsive for like “charges”
and attractive for unlike ones, it was shown in HII that
the configuration must be such that, viewed along the
axis of rotation, the particle situated between the other
two must have different sign of charge and be placed

on the opposite side of the axis from the two like
charges.

In relativistic dynamics, the two-body problem cannot
be reduced to a one-body problem;the only known exact
solutions are the planar, stationary solutions of Smiths
and of Schild® for time-symmetric electrodynamic inter-
actions, as well as similar solutions for time-symmetric
gravitational interactionss.7 (using equations of motion
arising from a Lorentz-invariant approximation method
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in general relativity). In all these solutions, the particles
travel in concentric circles and are situated on a dia-
meter on opposite sides of the center.

As discussed in HI, another class of exact relativistic
solutions can be obtained for a type of interaction sug-
gested by Havas and Plebariski.8 In particular, these
solutions exist for all z-body problems for which the
Newtonian orbit of each body is circular, and the motion
is flat and nonplanar, and thus for the three-body mo-
tions considered in HII, provided that all speeds are less
than c.

Apart from these solutions, no exact relativistic solu-
tions are known for » > 2. In this paper, we are con-
cerned with another relativistic generalization of the
three-body solutions with Coulomb or more general
forces considered in HII, replacing these interactions

by time-symmetric electromagnetic or mesic interac-
tions. The equations of motion for point particles inter-
acting through mesic fields were first derived by Bhabha
and Harish-Chandra,? using the method devised by
Diracl0 for the electromagnetic case. The interactions
they considered are the retarded ones. The correspond-
ing field-theoretical equations of motion for the time-
symmetric case, as well as a consistent procedure for
obtaining the corresponding (nonequivalent) equations of
motion of action-at-a-distance theory, were considered
by Havas.11 The equations of motion derived from the
field-theoretical point of view contain self-action terms
which are in the form of an integral over the previous
motion in the retarded case and over the entire motion
in the symmetric case. However, such an action of a
particle on itself has no meaning from the point of view
of action at a distance; it can be discarded without incon-
sistency, as discussed in Ref.11.

In Sec. I we discuss the formal solution for general
time-symmetric interactions of a type encompassing the
special interactions mentioned above for the three-
particle problem; some of the considerations are ex-
tended to n-particle nonplanar, but flat, solutions. In Sec.
III the results are applied to these special interactions;
the existence of exact solutions is established for special
values of the parameters characterizing the three-
particle system, and several limiting cases are studied.
Apart from solutions which reduce to the nonrelativistic
solutions of HII in the appropriate limit, we also obtain
several types of solutions which have no nonrelativistic
counterpart.

Copyright © 1973 by the American Institute of Physics 470
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1l. THE GENERAL SCHEME OF THE SOLUTION
A. Notation

We shall use a Minkowski space with coordinates x*,
where p = 0,1, 2, 3, and the zeroth component repre-
sents time. The metric tensor My is taken as

if p=v,
(1)

Summation over repeated Greek indices is understood.
The coordinates of a particle j are denoted by £34 and its
world line is given by z‘;(tj).

Moo =1, My =Tpp =733=—¢"% m,=0

We consider three particles 1,2 and 3 in a plane contain-
ing the axis of rotation, which is chosen as the 3-axis.
Att =1t; =t, =ty = 0 all the particles are in the 2-3
plane; then their world lines are

Zjo = t.,

1 = — i .
s z 'r]smwtj,

2 — 3 =z
; zr =7, cosw%, 2 Ziy

7 J

i=123, (2)

where w is the angular velocity, which will be taken as
positive. To allow a simple description of the motion,
we have taken 7, as the coordinate z2 at ¢t = 0, and allow
it to be either positive or negative;f)ecause the relativis-
tic case allows a greater variety of possible configura-
tions than the nonrelativistic one, this is more conve-
nient than the conventions and coordinates used in HII.

Because only two-body, time-symmetric interactions
are considered, and the motion of the particles is steady
and possesses cylindrical symmetry, we may choose
the “field point” to be in the 2-3 plane and its time to be
zero and to serve as a reference point. Thus the 1~
component is tangential to the orbit of each particle and
the 2-component is radial. Then the four-distance be-
tween particles 7 and j is given by

sh; = zH(0) — z8(— £;)):

s t”, s £ smwt”, 3)
2 — gy — 3=, —

SE =7, =7 coswt;;, S5 =2 — 2,

t; =t —t, ;=0

When two particle indices are attached to a single quan-
tity, the first one always refers to the “field point” and
the second one to the “source point.” When self-action
terms are involved, we have { =j and thus ¢, = f, - ¢/,
with £, = 0.

Occasionally we shall also use the proper times 7; as
parameters, with

dr; = (n,,dzkdzp)1/2, (4)

B. Geometric parameters

A natural choice of the unit of length for our problem is
¢/w. We define six dimensionless quantities
B=rw/e, o =(z—zWw/c, (5)

where the B's are the usual »/¢ and can be positive or
negative. The a's are antisymmetric in ¢ and j, with

015 Ay tag =0. (6)

Hence, there are only five independent quantities, which
will be called the geometric parameters.

A natural choice of the unit of time is 1/w. Therefore,
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we define
;= wt,;. (M
Transcribed into these parameters, Eq. (3) becomes
s = % 85 =~ 5 B; sing,;, (8)
c
s = s (B; — B cosw;;),  s3 = o %

C. Equations of motion

Since only two-body forces are considered, the equa-
tions of motion for a three-particle problem are gene-
rally of the form

d2z4

i
=FH# + FE + FH
dTiz ij ik ii?

m; i#2j =2k #i, (9)
where m; is the mass of particle {. F}# is the force acting
on particle ¢ due to particle j; F}¥f represents the self-
action of particle ¢ (which is absent in an action-at-a-
distance theory).

In our problem, all the terms in Eq. (9) must be indepen-
dent of time, and be functions of the geometric para-
meters. Furthermore,Fig1 must depend bilinearly on the
charges of ¢ and j, or

(10)

2
FZ»‘: ez.ej Z)—me(ﬁpﬁjy Otij), m=1,2,3,

where the f's stand for some dimensionless functions to be
calculated for specific interactions. The e¢'s characterize
the charges of the particles and e2/(length)? is assumed
to have the dimension of force. For conciseness we
shall use e regardless of the nature of the interaction.

Our purpose is to find under what conditions Eq. (9) is
satisfied by the world lines defined by Eq. (2).
D. Formal solution

With a few assumptions, the equations of motion can be
simplified and a formal solution obtained without adopt-
ing any specific interaction.

We assume that the force terms can be derived from a
Fokker-type interaction Lagrangian11—13

o e}
gy = jO{ dr,dt, b, ] (11)
where
Ay = By = Byylsy w35 03),
s;; = (n,,84,55)172,
dz# (12)

p=_*
v

w,. =1, VvY, ,
1 v
J [ J dTi

= = v)1/2
v, =0, v = (g, vhvp)172,

ij
We shall prove that, for our problem,
(1) F,S = 0, Fz]_; =0,
(W) Fyt=—Fvit,
(lii) FQ=FL =F3 = 0.

Yi = (1 - 612)-1/2’
After the standard variational procedure, we obtain from
Eq.(11)

Fi, = [7u;dr, (13)
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where

f“ .= 28k,

A, d (oA, oA,
o — gl + L gu), (14
dwy; 7

The integrand f4; of Eq. (13) may be interpreted as the
force acting on ¢ due to the particle j in the interval
between T and T + drj.

For our problem,dr; = — y;1dy ; and all the quantities in
Eq. (14) can be expressed as functions of t,;. Clearly,
Sijs Wyjo and v, ; are even functions of £ . Therefore A,;
must also be even in tij. It is also easily seen that

fg(t,]) = f,?(_ tij)’ f,%(t,'j) = f,:‘l,(— tij)’

(15)
fg(tl]) = +f£(_ tij)’ fg(t,]) = +f3(_ ti]')'
From this and Eq. (13) we obtain
F0=0, Fl1=0, (16)

i i

establishing (). If self-action terms are present [which
can not be included in (11)], they must have the same
properties under time reversal as the interactions and
thus

F3=0, F}=0. (17
Eqs. (16) and (17) reflect the fact that radiation reaction
is excluded by the use of time-symmetric interactions.
If (17) would not hold, we would have

F=e¢? 2;‘f(lgi) = 0,
¢ (18)
Fl=e? %fl(ﬁi) = 0.

c

Let particle i be constrained to move according to Eq.
(2), and the other particles be chargeless. Then the 0-
and 1- components of the equations of motion become
0=FQ+F9 0=F}+F]l, (19)
where F¥ is the constant constraining force. Since
radiation is excluded, conservation of energy and of
angular momentum is violated unless F9 = F1 = 0.
Hence, Eq. (17) follows from conservation requirements.
A similar argument also shows that F3 = 0, establishing
(iii). Hence the only possible nonvanishing component of
the self-action force in the field-theoretical case is F3.

To prove (ii), we note that v3 =3 = 0 and s3 = z, — 2
= const in our problem. Therefore, Eq. (13) reduces to

3 A,
F3 = 2z, — z) [ dr a_ls,.j , (20)
or, using d7, = 'y;ldt',
oA,
— - ; i)
F3 =2 —z)y;t [ dt 75, (21)
As the integrand is symmetric in ¢ and j, we find

F3yil = _F}%Y}l» 22)
establishing (ii). Clearly, these terms represent the
impulse transfered from one particle to another; thus,
Eq. (22) represents a generalized Newton's third law.

Lagrangians of the above type are used for the electro-
magneticl2 and scalar or vector meson interactions.11
Therefore, the results hold for all these cases.14
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Equation (21), together with Eqgs. (10) and (5), indicates
that Fg must be of the form

w2
Fi = eg pr) oy ')’iffij (Byy By ays), (23)

where S’ij is symmetric in { and j. Therefore
Fg =0 if a; =0, (24)

i.e., if the motion is planar.

Following the pattern of Eq. (23), we also write
2 w?
F;‘j = €6 ;2— ;B ”ij(Bp B, Otij); (25)

but here the function l;; is not necessarily symmetric
in ¢ andj, and ; = 0 does not necessarily imply F;% =0,

The only nonvanishing component of the four-acceleration
for the “field point” at £ = 0 is the radial one,d?z2/d12 =
~ cwy2B;,. Applying this and the above results to Eq. (9),
we find that the 0- and 1-components are identically
zero. The other two components are

—mewy?B; = (w/c)2eB;y; 25 ¢ uy, (26)
7
0 = (w/c)2¢ (60T, + €0, Fy). 27

Thus the ratios of the e's are determined by Eq. (27).
Introducing €, by

;5 = %} LI (28)

where 7, ;» 18 the permutation symbol (antisymmetric in
all indices, with 7,,4 = 1), we have

€1:€,:€5 =€,1€,1€4. (29)
From this and Eq. (26) we obtain

m;c3

€.
=471 Z ‘s (30
we? Y ]Z; &t )

provided that none of the ¢'s vanishes.

Equations (29) and (30) contain five independent equa-
tions, whose right hand sides are functions of the geo-
metric parameters. Therefore, these equations indicate
the relation of the five geometric parameters to the five
independent particle parameters, which can be chosen
as the ratios

mi .

te,e,; —-, i=1,2,3. (31)
€1:€3:€3 N )
Once the €'s and u's are given, a set of geometric para-
meters determines a set of particle parameters through
Eqs. (29) and (30). In this sense, the geometric para-
meters can be considered as the independent variables,
while the particle parameters are the dependent vari-
ables.

These ten parameters constitute a solution. However,
not all the particle parameters are acceptable physi-
cally; the mass, and therefore the m,/(e?w), must be
positive. This in turn imposes three “positive mass
conditions” on the geometric parameters. From Eq.
(30) we obtain

Z Iy, <o. (32)
€.

7 i
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If none of the ¢'s vanishes, we are assured of the exis-
tence of a physical solution whenever these three in-
equalities are satisfied.

Equation (32) can be put in a different form. Defining

_ [T V998 €M,
Hi:7i1<l+—z_+—l~ﬂ>’

€ € €€,

(33)

we get, multiplying Eq.(30) by €2/(e,€5€3) and using
Eq. (29),

My iMg iy =iy Ijly g, (34)

The positive mass conditions may now be written as

signp, = — sign(e e e4), =1,2,3. (35)
The procedure described above provides us with solu-
tions for the particle parameters (31) in terms of the
geometric parameters (5). The usual procedure in
dynamics is to search for solutions for a system with
given masses and charges; for the particular type of
solutions considered here and in HII, it is to be expected
that solutions exist only for a limited range of these
quantities. However, the determination of this range is
a difficult problem which has not even been fully solved
for the nonrelativistic case treated in HII. For the rela-
tivistic case treated here we have not attempted to find
a systematic procedure for determining this range;
however, it will be shown later that solutions may exist
for values of the charges which do not allow a nonrela-
tivistic solution.

In the nonrelativistic case, it was shown in HII that, for
Coulomb interactions and the configurations described

in the Introduction, solutions exist for arbitrary choice
of the geometric parameters, or, in the terminology used
above, that the positive mass conditions are always
satisfied. In the mesic case,no such simple result holds,
as discussed in Sec, IIIB.

E. Special cases

We now consider those general cases where some of

the €'s vanish. If one or two of them vanish, this implies
by Eq. (29) that the corresponding charges also vanish.
Since the uncharged particles do not interact with the
other particles and thus cannot influence their motions,
we then are no longer dealing with a three-particle sys-
tem,

If only one particle has a nonvanishing charge, say e,
Eq.(27) is identically satisfied. From Eq. (26) we obtain

maqc3
= (36)

5 = v3Ha3 <0
etw

as the positive mass condition. Therefore, a one-particle
solution, i.e., a particle traveling around a circle under
the influence of its own field, is possible if the self-
action term p,; is negative. This type of solution does
not exist in a theory of action at a distance.

If one of the charges vanishes, say ¢; = €; = 0, this
implies

@y3=0 or &,5=0. (37
If @55 =0,the solution reduces to the planar two-particle
solutions of Smith5 and of Schild.6 If §,, = 0 and @45 =0,
on the other hand, we obtain a nonplanar two-particle
solution.
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For both the planar and nonplanar cases, Eq. (26) re-
duces to
m,c3 e,
— =l |2 + < 0 (38)
o Y2 |:ez Hag “22]

and a similar equation with 2 and 3 interchanged, which
are the positive mass conditions in the case of field
theory. In the case of the theory of action at a distance,
for which p,; = 0, it can be shown by a proper choice of
the sign of e,e4 that the only condition is

T2 _Ys bz 5

Mg yo Mz

(39)
Only three of the five equations of motion have been
used, because particle 1 is considered absent. However,
if we consider it as a test particle instead, the other

two equations provide a solution to the restricted three-
body problem. We have

€y €3
a_a) (40)
My M3 vp Piz ¥ Hig€s/€s (a1)

€1 €y ¥y Ha3€3/€y t gy
In case all of the €'s vanish, Eq. (29) does not imply that
any of the e's should be zero, but ceases to specify the
ratios of the charges. Then the €¢'s in Egs. (30) and (32)
should be replaced by e's. In this sense, the ratios of
the e¢'s become independent variables. But the geome-
tric parameters have to satisfy the condition that all
the €'s vanish. In particular, all the a's may be zero,
which corresponds to a planar solution.

F. Generalization to n particles

Instead of three particles, we now consider a system of »
particles each of which has a world line of the form (2),
and corresponding sets of 2n — 1 geometric and 2n — 1
particle parameters. Equation (26) still holds, with the
summation running from 1 to n. Equation (27), on the
other hand, contains » — 1 terms instead of 2, and thus
relation (28) no longer holds. The equations correspond-
ing to Eq.(27) may be written in matrix form as

0 €12 €13 ° " T €q, €
€31 0 €23 ~ " 2
€33 €33 0 - e3
enl . « v s e 0 en
where €;; = —¢;; = ;,3,,. A nontrivial solution exists
only if
dete;; = 0, (43)

i.e., if the rank » of the determinant is smaller than ».
As proved by Frobenius,15 for an antisymmetric deter-
minant 7 is always even and there exists at least one
nonsingular » X » minor which is antisymmetric around
the original diagonal. Hence, without loss of generality,
we may rewrite Eq. (42) as
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0 €12 €13 " ' " €y, €
€21 0 €23 " " " €2
€31 €33 0 - e3
€1 * 0 e,
€1 r+l e1 r+2 " " " €14 er+1
€2,4 ) er+2
=— , (44)
€rrel ern €,
where the square matrix on the left hand side is non-
singular. This equation may be solved by Cramer's
rule. We obtain
e]- = Aj/A) j=v, (45)

where A is the determinant of the square matrix and

A is the same determinant with the jth column replaced
by the right-hand side of Eq.(44). Generally, the deter-
minant of an antisymmetric matrix of even order can be
expressed as a perfect square of a polynomial of its
elements. Hence A is always positive.

At least one member of the last column matrix of Eq.
(44) must be nonzero to have a nontrivial solution. Let
¢, # 0 and define

€j_eA1/2’ l=j=7, .
46
e Al/2
€= , r<j=n,.
e

(Xf » = 0, the first line is absent and in the second line
A is replaced by 1.) Then we have

€)1€y1€z:" " =@yie5t€5: 00, (47)
Eqgs.(30) and (32) retain their form except that the sum-

mations run from 1 ton. Then we have n positive mass
conditions,

Forr <n — 1, the €; are functions of the ratios of n — 7
e's as well as of the geometric parameters. Forn =3
and v = 0, we have the case discussed at the end of Sec.
IIE.

If #» is an odd number, Eq. (43) is always satisfied and »
may equal » — 1, In this case, all €; are functions of the
geometric parameters only. Forn =3 and» = 2, Eq.
(46) becomes Eq. (28).

If » is an even number, Eq. (43) becomes a condition im-
posed on the geometric parameters,and» <»n — 2. For
n = 2, Eq. (43) becomes Eq.(37),and 7 = 0.

The solutions considered here are flat. For the non-
relativistic case,n-particle solutions which are not flat
have been given in HII. Their relativistic generalization
goes beyond the scope of this paper; however, the method
developed here can be adapted to the nonflat case.
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I1i. SPECIFIC INTERACTIONS
A. Exact form of force terms

In the electromagnetic case, the force terms are derived
from the time-symmetric Liénard—Wiechert potentials.
The equations of motion for time-symmetric neutral
scalar and vector mesic interactions, derived from the
point of view of both field theory and from that of the
theory of action at a distance, are given in Ref. 11; for
charge-symmetric mesic interactions they are given in
Ref. 16. In the mesic case, there is a new parameter x
(=mc /% in a quantized theory, where m is the rest mass
of the meson). The calculations presented here refer to
the neutral case; however, the results also represent
special solutions for the charge-symmetric case,16

In the following, the double subscripts #j are omitted for
brevity where no confusion may arise; the letters E, S,V
after the number of the equations indicate the cases of
electromagnetic, scalar mesic, and vector mesic inter-
actions, respectively. With the help of Egs. (23) and (25),
we obtainl?

10 P
g 12 P 48E
# Kap K’ (45E)
1 /19 1,1 1 1
g -1 (123 1 L _len 488
N Yin(Kaqu a2k aa ])' s
1a P 1P 1
g —_ 18 P 1 LI N (48V
T Kap K A2 2K a4 LF) )
1 3 @
—_1 3 Q 49E
Y5 77K 29 K 49E)
Yi 1 1
Tl Ay 1(1]
+_1_(la_fi+_l_i_i 2[R]), (498)
viv; \K 3¢ K A2 2K )4
13 14 1
.13 e 1 L .1 49V
b= T K 3o Kk 222K 4 2[Q): “w
by =0, (50E)
1 11
Fi =3 ¥,[1] - v 2[R], (508)
1
Bis = g YalQ) (50v)

all quantities not under the integral operator ¥ are
evaluated at ¢ = 6, where 6 = 6,; is defined by the posi-
tive root of

82 = a2 + B2 + B2 — 2,4 cosb, (51)
and

K= K;;(¢) = ¢ — BB, sing,

(52)
P = P, (p) = 1— BB cosp,

Q=Q,A=1- %(w sing + cosy) — B,(8; cosp — B),

R

i

8
R(p)=1~— 5’ cosy,

(2

>
il
<€
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The integral operator ¥, is defined as

w d,(cxs )
(exs)®
where J, is the Bessel function. The lower limit of

mtegratmn 6 is given by Eq.(51); when apphed to the
self-action terms Egs. (508, V), it reduces to 6,;, = 0.

Through integrations by parts, Egs. (48S, V) and (498, V)
become

5, =———w, [a <1 2 lﬂ (548)
Y dp \K 2¢ K
EF..:‘I’O[:L<—1 —Q—Bf, (54V)
i 99 \K 3¢ K/]
n Ny [a_ .l] L\I, __a_<_1_ a_Il>j| (558)
=0 — ,
Uy Plee K1 9y °lae\K 3¢ K
3 /1 3 Q\]
= | (= = 2 55V)
Hii "[aq) <K 20 K> (

These equations are too complicated to be analyzed in
general, and thus we only consider some limiting cases
in the following. The values of the particle parameters
for the general case can be obtained through numerical
methods. As an example, a numerical and graphical
analysis for the case of electromagnetlc interaction with
1=—Bp=Bzanda,, =0y, = 20113< 37 is given in
Appendlx A of Ref.17. It is found that there are forbid-
den regions of these parameters where the positive
mass conditions are not satisfied; these are indicated
in a diagram. The relative signs of the charges for the
allowed regions and the planar and nonplanar two-par-
ticle solutions are also discussed; in particular, it is
found that in the nonplanar case for certain values of the
geometric parameters all charges can be of the same
sign.

Although we now restrict ourselves to limiting cases,
it should be noted that they are used only to show the
existence and location of some solutions, but that these
solutions, of the form (2), are still exact.

B. Nonrelativistic limit

In this limit we take all the geometric parameters to be
small; in the mesic case, A is also assumed to be small.
The results are as expected; the electromagnetic and
mesic interactions reduce to the static Coulomb and
Yukawa interactions, respectively. We have

- 1
~ €Xp(— 6/A) ( >
5, = a) (568)
5, & — SR/ <1 . 2), (56V)
63 A
1 B;
_ exp(— 8/x) 0 B;
By = 63 <1 * ;) ( —;3];>’ (578)
exp(— 6/A) 0 B;
=S (8

The self-action terms are too small to distinguish the
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field theory from the theory of action at a distance in
this limit, as will be shown in Sec.IIIE,

By Eq.(33), we have
1 —B/B, 1—58,/8

M, = -
’ @y Uy

N Tfi]k=+1, (58)

for all three cases. Employing Eq. (35), we easily obtain
the following results:

(i) There is no nonplanar solution in this limit for the
scalar meson case. This is due to the fact that the scalar
(in contrast to the vector) mesic interaction is attractive
for like charges. Thus, this interaction is analogous to
the gravitational rather than the electromagnetic one.

(ii) For the electromagnetic and vector meson cases, a
nonplanar solution is always possible. But the signs of
the charge and radius of the middle particle must be
different from those of the outer two, in agreement with
the results of HII.

C. Close range limit

In this limit we take all the geometric parameters to be
small, but let A remain finite. For the electromagnetic
case, this is identical to the nonrelativistic limit. For
the mesic cases, the results are similar to the non-
relativistic limit except that the factor exp(— 6/x) X

(1 + 6/2) reduces to 1 in Eqs. (56 S, V) and (57 S, V).
Eq. (58) remains valid. The solutions exist under the
same conditions as in B.

However, if the higher order terms are considered, we
find nonanalyticities at A = 1/N (N integer). The charac-
teristics of these nonanalyticities are similar to those
of the self-action terms which are discussed in more
detail in Sec.IIIE. They do not show up in the nonrela-
tivistic limit where A was taken to be infinitesimal.

The apparent inconsistency of the disappearance of the
nonanalyticities as A = 0 is explained by property (iii) of
the power series discussed in Sec. IIIE,

D. Asymptotic limit

In this limit we take the a's to be large. In the electro-
magnetic case the results are relatively simple. We
have

smé)

— B:B; (59E)
.. B cosé
uij = B‘Z; 5 (GOE)

assuming that |sing| and |cosé| are large in compari-
son with |1/a]|.

For the mesic interactions, we shall first consider the
case of action at a distance. The self-action terms will
be discussed later. By carrying out the integrations on
Eqgs. (54 S, V) and (55 S, V) through an expansion of the
operands in this limit, we again find nonanalyticities at
1/x = N. For the region A > 1 we have

B, 1 —a-2)1/2
5, = BB cos[(1 —a-2)1/29] <1 _i>’ (615)
%Y 93 A2
N sin[(1 — a~2)1/29] 1
%y = — BB 52 (1 - 7\—2> ,  (61V)

_ B sinf(1 — A~2)1/2¢] < 1\1/2
e, = 05 (1 - ap2) 1———> , (628
J ')’] B; o2 A2 ( )
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B, cos[(1 — A 2)1/2p
By B]_ [ [ ]: (62V)

assuming that | sin[(1 — x-2)1/2¢]|, | cos[(1 — A-2)1/29]|
and,in the scalar case, | 1 —282| are large in comparison
with |1/a|. For the region 1 > A > & we have

I

~ BB sin[(4 — x-2)1/2¢] <l 1 >3/2 (635)

H Y% 64 422
cos[(4 — r~2)1/29] 1
gij = 231,231_2 o3 (1 —_ 4—A_2> ’ (63V)

. —A"2)1/2 1
oY aagage cos[(4 — A 2)1/2¢] B
5= , B; (382 — 2) o3 1 ne) (648)
sin[(4 — x~2)1/29] 1\1/72
>~ 982 -
My = 28 oz (1 4)‘2> , o (64V)

assuming that | sin[(4 — x"2)1/26]], | cos[(4 — A-2)1/29]),
and, in the scalar case, |2 — 382| are large in compari-
son with | 1/al.

In the region A > 1, the leading terms of the expansions
yield, after integration, the results indicated by Eqgs.

(61 8,V) and (62 S, V). But in the region 1 > x> 3,
these terms fall off exponentially with 6(8 = « in this
limit), We obtain the results (63 S, V) and (64 S, V) from
the second order terms of the expansions; for smaller

A we have to use higher-order terms.

1t is easy to show that the positive mass conditions can
be satisfied and that solutions exist in the limit con-
sidered. The signs of the 8's do not affect the existence
of the solutions, and thus can be chosen arbitrarily,
including the case that they are all positive, i.e., that
the three particles are on the same side of the axis of
rotation. By proper choice of the values of the 8's, the
signs of the e's can also be chosen arbitrarily.

The nonplanar two-particle solutions can also easily be
found from the above results for all cases.

E. Self-action terms

The self-action terms (50 S, V) can be evaluated as
triple series. The characteristics of these power series
in (8/2)2 can be summarized as follows:

(i) The series are ascending power series, with coeffi-
cients depending on A.

(ii) The series converge absolutely for all values of 3
and X;they converge rapidly when the order of (8/x)2
becomes larger than the magnitude of g/A.

(iii) As a function of A, the series have nonanalyticities
at 1/x = N (N integer). For larger N, the order of the
nonanalyticities as well as the order of the terms which
contain the nonanalyticities also become larger. More
specifically, a general term of the series contains the
factor Re(l — N2x2)M+1/2(8/)\)M, where M = N-1;thus

in the nonrelativistic limit, where g/ is constant, the
nonanalyticities disappear as A — 0.

Up to order 382, we have

1 —p2
A3

s o8-

X

%[1_(1_>‘2)3/2 + L B\? 2 _2(1 ~—2a2)5/2
1+x(8)%

+ 41— 4;\2)5/2]%, (658)
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B = 1 :;;ﬁz %%[1 —Q1- )\2)3/2] i é <ii> 2
X [3 —2(1 —22)5/2 + K1 — 4r2)5/2)
1 X 2
X ; (1 —=2a2)172 + 5 (ﬁ—) [(1 —a2)3/2
—22(1 — 4>\2)3/2]§. (65V)

The imaginary terms, if any, are omitted here and in
the following.

Obviously the series are suitable expansions either for
large X or for small 8, If A > 1, we have

IR

>

i = (66S)

By & = (1 +82), (66V)

a3

W

Hence the self-action terms are small in this limit. A
solution for the case of field theory can always be found
in the neighborhood of the solutions for the case of
action at a distance.

But if A is not large, no conclusion can be reached in
general. However, two interesting results may be ob-
tained by assuming 82 to be small:

(i) Close range solution: By setting 8 = 0 in Egs.
(65 S, V), we obtain

~ 1
B = 5 (32— 1+ (1 —a2)272], (©75)
b ® o [1— (L + 22— 222, (67V)

which are constant in this limit, Hence the existence
of the solution is not affected by the existence of the
self-action terms. For the region

A2 < 33172 = 0, 866, (68V)

K;;» given by Eg. (67V), becomes negative; therefore we
have one-particle solutions in this region.

(ii) Nonrelativistic limit: In this case both 8 and A
approach zero while the ratio /X remains finite. One
would at first expect dependence on (3/A)2 in this limit
from Eqs. (65 S, V); but it turns out that there is no such
dependence in the leading terms, and

1
B = n’ (69S)
1
Hi; = — ﬁ . (69V)

Thus, the mesic self-action terms have no effect other
than to change the values of the masses by amounts
e?
wepu; eyl =t 3ye2c2 =31 5m -ﬁ'—c

(where m is the meson mass) in the nonrelativistic
limit, in agreement with Bhabha's18 and Harish—Chan-
dra'sl® results. The interaction terms are two orders
higher in ¢ than the self-action terms. Hence, except
in the one-particle solution of the vector case, the self-
action terms are too small to affect the existence of
the solutions, as mentioned in Sec.IlIB.

IvV. DISCUSSION

In Secs.II and III, we have established the existence of
exact solutions for three particles with half-retarded,
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half-advanced interactions. For the case of electro-
magnetic and mesic interactions, they were shown in
Sec.IIIB to reduce to the nonrelativistic solutions found
in HII in the appropriate limit. But beyond this, we also
found a number of types of solutions which have no non-
relativistic counterpart. These include solutions with
all electric charges of the same sign (Sec.IIID) and solu-
tions with all three particles on the same side of the
axis of rotation (Sec.IIID), as well as planar and non-
planar two-particle solutions (Secs.OE, IIID), and a one-
particle circular solution (Secs.IIE, OIE),

The solutions with all charges of the same sign show
that a given relativistic two-particle interaction can be
either repulsive or attractive, depending on the charac-
ter of the entire motion. This particular feature of
relativistic interactions has been noted earlier for the
case of motion of a particle in an external field.20

The three-, two-, and one-particle solutions with all
particles on the same side of the axis of rotation vio-
late our preconceived (Newtonian) notions of conserva-
tion of momentum. However, in relativistic dynamics
the conservation laws either have to include field as well
as particle variables, or involve integrals over the en-
tire motion.21.13 Qur results must be consistent with
the conservation laws, since the equations of motion

are; 10,922 calculations verifying this explicitly will be
published elsewhere,

The nonplanar two-particle solutions can be used to
construct examples of more than one exact solution
with the same initial positions and velocities, as will be
shown elsewhere.23

For the case of mesic interactions, we found that in the
relativistic region the solutions contain nonanalyticities
at 1/ = integer (Secs.IIC, IIID, IIIE).

One question remaining to be answered is that of the
stability of the solutions, which has not been resolved
even for the nonrelativistic solutions obtained in HOI. For
the relativistic Kepler problem (i.e., for the planar solu-
tions of Smith5 and of Schild$) it has been investigated
by Staruszkiewicz24 and by Andersen and von Baeyer,25
who arrived at opposite conclusions. We intend to re-
turn to this question elsewhere.

Some of the highly relativistic solutions obtained occur
in the region where quantum mechanical effects cannot
be ignored for the known particles and interactions.
The left-hand side of Eq.(30) may be written as

med _Ffc c/w
e2 f/mc’

The first function on the right hand side characterizes
the strength of the interaction. I the particles are taken
to be electrons, it is the reciprocal of the fine structure
constant and thus ~137. For the strongly interacting
nucleons, it is of order 1. The denominator of the second
function is the Compton wavelength of the particle. The
numerator is subject to our choice. If the separations
between particles are large (as in the solutions dis-
cussed in Sec.IID), the right-hand sides of the three
equations represented by Eq. (30) must be of order of
magnitude less than 1. In order to have this type of
solution, we must have ¢/w smaller than the Compton
wavelength; obviously, quantum mechanical effects can-
not be ignored then.

e2w

Similarly, since the value of A can be written as 7w /mc?2
(where m is the meson mass), we must have x < 1 in
the classical limit, which precludes detection of the non-
analyticities in that limit.
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The one-particle solutions, however, are not excluded
by such considerations. On the other hand, their exis-
tence requires the interactions to be time-symmetric
rather than retarded. It also requires that field theory
be valid rather than the theory of action at a distance.26
Furthermore, to be experimentally detectable, the mo-
tions must be stable.

The use of time-symmetric interactions was necessary
to allow the existence of stationary solutions. As the
prime motivation of this investigation was a study of
typically relativistic features of solutions of the equa-
tions of motion of interacting particles27 rather than
to obtain results directly comparable to experiment,
the question of retarded vs time-symmetric interac-
tions is not relevant here. It should be noted, however,
that for problems involving many particles the use of
time-symmetric interactions does not preclude a des-
cription of radiation.28.11 Furthermore, relativistic
quantum mechanical stationary states are expected to
correspond to such classical states with time-sym-
metric interactions.
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A scaling method that reduces an electromagnetic problem described by a complicated geometry in a
complicated medium to one described by a simple Cartesian geometry in a simple medium is
explored and developed. This method creates and identifies an equivalent class of problems and their
solutions from the Cartesian simple medium problem. We illustrate the usefulness of the method by
applying it to the design of a reflectionless, distortionless, loaded matching section connecting a
cylindrical and a conical coaxial waveguide, with the TEM fields being explicitly found everywhere.

. INTRODUCTION AND SUMMARY

The transform methods in mechanics and fluid dynamics,
which can carry a problem and its solution into a class
of equivalent problems and solutions has been of interest
for many years.l However, the application in electro-
magnetic (EM) theory of a scaling method of such similar
nature has not received extensive attention and only a
few works have recently been devoted to it.2 The pur-
pose of the present work is to investigate and develop for
EM theory such a similarity or scaling transform.

In Sec.II we first develop the general theory of scaling,
carrying an EM problem P into an equivalent P’, with the
accompanying transformations for media, geometry, and
fields. The advantage of such a procedure is, hopefully,
to make the complexities of the geometry and the
medium “cancel” each other in such a way that the re-
sulting fields are simple and have known solutions. Also,
some special cases of interest for 3-geometry3 are dis-
cussed with results listed in Sec.II. Section III is de-
voted to the solving of a matching problem between a co-
axial cylindrical and a conical waveguide,

Il. THEORY OF ELECTROMAGNETIC SCALING

A. General theory

Basically, scaling is possible because the covariant
divergences of the antisymmetric EM field tensors can
be rewritten as ordinary divergences by including the
metric determinant.4 Let us consider a coordinate sys-
tem {x0 = ¢,x1,x2, %3} with invariant length ds2 and
metric coefficients g, (see Ref. 5):

ds? = &, dxrdx¥, p,v=0,1,2,3, (1)
where the summation convention, as in the whole text, is
employed for repeated indices unless otherwise stated.
For observers 6} fixed in this frame {x#} with their
spatial locations x¢ = fixed, the Maxwell equations are6

; (i) ”
—gej- B,——_ [— ik, 0 ' E =0
v ) + [Vv—gnege = 2)
[ ' gOO W @7 (k)]’l (

. . . @)
V=gn™el elyE = WZgel B 3
[ W)W (z)].u (i) F—goo '0’ (3)
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i D@ ik 0 j
g — [V=gn"egyelyHip ;
[ (l)"/g?0 , W],
-z A ON ] (4)
o @)
800 !

\

ikl j v — ; D@
—V=&n"euewlp),, = [‘/:ge(i)——‘/—
0

\ + V= gJ(i)e(ji). (5)

Here we have used the following notation: g = det( g“,,);
1k = 0 if (ijk) are not all different,+ 1 if (#k) is an even
or an odd order of (123); the Latin indices 4,7, a, b, etc.
equal 1,2, 3; e(';l) are the v-contravariant components of
the local comoving unit-tetrad vectors? e, of {0}; (D, H),

(E,B) are the usual EM field as seen by {Oi;D(l’, etc. are
the physical vector components on e(, for 0};( ,J) are
the physical charge-current source as seen by {0}; and
(), A= 3/3x%( ). Also we assume the medium to be
linear with constitutive relations

DW= eGED + alyB?, ®)

H(i)_: BEZ;E(J) + K((;'))B(j), (1)
@) () (D

J = O'(j)E . (8)

If there are conducting boundaries, they are described by
F(x) = 0. The above, with appropriate boundary condi-
tions, defines an EM problem P,

Now, a scaling can transform P into an EM problem P’
with simple Cartesian geometry and correspondingly
scaled medium properties, sources, and boundary con-
ditions as the following. If we define the scaled “ficti-
tious” EM fields (e, b), (h,d) and their Cartesian com-
ponents e, b ki and di by

el = 4" gpiabyirlg (ag (RBE W (9)
bi=V— ge(l)j,:B(l) + qilkg WOE (o) | | (10)
&oo
. D@ N
di=— V= geWi | 2= _ nitkg Gog(p (11)
V€00
hi= V= gnisbpikl g (ag (R)o g (12)
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in the coordinate frame {x#} = {t,x1,x2, x3}, which is
now taken to be Cartesian with

ds? = dt2 — (dx1)2 — (dx2)2 — (dx3)2, (13)

then the Maxwell equations (2) to (5) become respectively

V'b=0 (14)
ab

VXxe=—2 15

o (15)

Ved=p (16)
3

VXh=j+-—-d '

i+ 4 (1m

as in the simple Cartesian sense. The scaled medium,
corresponding to (6) to (8), is still linear and has as
constitutive relations

dl = %5+ A7%°
Wig b § A(m) 1, <€(<2) (30 ,(p)
= Djn(n, Almla_abs mn ilp (i)0,(p
=—e e e n n —n e
{ [2 ¥&oo Bm)

®
o . .
_@—e(w0< (m) _nzlpe(z)OK(p))jl e
00 [P (n)
8oo

)
A () itp ()0 (p] .0
—VZgg [‘/g;'_n‘ e ORGP b, (18)
00
hj = Bjses + )tjtbt
1 jab ikl (ida (R)bA(p)t | Almdr rts B((,g
=—n"n e e e e 'n
2 2
) (m)o r—— (0]
— V&0 K(pe )e — V80K (pt ] (19)
].k — Zktet =_ %e(z)k z;)njmn/\(m)afs(n)bnabtet’ (20)
where ¢ V¥ = _ e,y and ¢ m)a = [¢ WIT1 exist since

det{e ()] = 0, The source is scaled by8

q (i) o
p=v— g( +J e ))
VEo00 '

(i) &
=v— J e(‘) .

(1)

The corresponding boundary conditions are given

through (9)—(12) and (18)—(19) to regulate the boundary
behavior of the “fictitious” fields at the same mathe-
matical boundaries with {x#} interpreted as Cartesian
coordinates. For example, conducting boundaries are
still described by the surfaces F(x) = 0, on which e satis-
fies Nigldinkimen g = 0 where N is normal to F(x) =

0.

Apparently, the reduction of P to P’ with greatly sim-
plified geometry and differential equations is achieved
at the expense of the much complicated medium pro-
perties. However, we must realize first that the “ficti-
tious” fields and the “fictitious” problem P’ are the
equivalent of and as real as the “‘real” problem P, and
they can play a reverse role at our disposal.? Thus we
can require the apparently complicated medium pro-
perties (18)—(20) to be simple enough so that we know
the solution of the EM problem P’, Then, through the
inverse scaling P’ — P, we obtain the whole class of P
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and their solutions with each of them corresponding to a
particular choice of g, .

The inverse scaling P’— P has, corresponding to (9)-
(12),

EW = (1/2V— g)nimng (m)a & Wipadsgs (22)
{B(z)= (— ,[g_(;/\/_‘_g){@ Wips + ¢ (m)0g(mlag Wopavsegs}

{23)

{D(z) =(— @/«/__g) {€Widi — ¢ (m)0g (m)a g Wbpabsps}(24)

HW = (1/2V= g)pimmg (m)ag (mbpabsps, (25)

and corresponding to (18) to (20)
DW= _ gooé‘(l)be (p)k{[%(gbi

— e (m)og(m Japabegetyy ikdgpnse (n)d
— (Adk — ¢ (m)Oé‘(m)anabc)\ck)nipse (i)O]E (s)

_ (1/\/;,;‘;)(‘4 ok _ o (m)Oé‘(m)anabcAck)B(P)}’ (26)
H(l)'= %nzmn é(m)ué‘(n)bnabce (i)s {ninp [522 ande ‘n)d
+ ACse (n)O]E(p)_ ACS[B(i)/‘/,gOO]} , (27
J @D = — e Wkgkipjabyimng(ideg (m)o E (n), (28)
Also, the inverse of (21) is
5‘1 = (w/ /‘/ g)(p — &6k g ()0jk)
LI® = (- 1= gpetwmge, (29)

B. Special geometries and media

For the P — P’ scaling, the mixed constitutive terms Af/
and Bii‘ in (18) and (19) are caused partly by the
medium's intrinsic constifutive mixture ag-)) and Bf’ﬂ) in
(6) and (7), and partly by the nontime-orthogonality term
e(®0 of the frame {x#} with g,; # 0. If both a{) = B¢ =
0 for the {x#} of problem P, then P’ has the simplified
version of (18) and (19),

dj - (l)A(m)aA(n)bnabs kmn/2 oo)e(k)e , (30)

Jab 1kl (1)a )bA(p)t (l)b

W = (= Vggo/2)n (31)

If, in addition to the above, the original frame {x#} has a
diagonal metric, i.e.,gw = 0 for p # v, we havel©

e(y="06//1g, =5 /g“

Then (30), (31), (20) of the scaled medium further reduce
to

(32)

at £283 o8 €(<1) egzlg 5((:3
o) Fe\o M an) \& & 8
g, O el
X 1/g, e2 |, (33)
O 1/g, e
b* = n"n’ = [in (33), replace e’ by k' and €() by p{s], 4
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(1/¥Zag)i ' = [in (33), replace € by o()], (35)

where g = K1 such that B = pégfi("}. For this case,

(9)-(12) which link fields of P’ and P reduce simply to
(noc summation here)

ej:gong(j) (36)
{bi = £,8,85(BP/g], 37
{dj = (glgzg:g./gj)D(j) (38)

hi = gog; HO, (39)

The inverse of (33)-(39) for P'— P is obvious.

C. Remarks on medium restricted scalings in

Euclidean 3-space
Physically limiting ourselves to certain class of media
puts a restriction to the scaling. Preparing for a parti-
cular application we will treat in Sec. III, let us examine
such limits in the following in a Euclidean 3-space and
choosing orthogonal coovdinales with g4 = 1.

If we require both P and P’ to have isotropic media,i.e,,
) =— €6 and £ = — £6Y, etc., then (33)~(35) imply

81 =89 =83 (40)
and

t/e=n/u=2/0=g. (41)

In Euclidean 3-space, there exist only twoll such co-
ordinate frames, namely: Cartesian with d§2 = d2 —
dx2 — dy? — dz2, and inverse sphere with d$2 = df2 —
adx'2 + dy'2 + de’2)/(x'2 + y'2 + 272)2,

If we require both P and P’ to have uniaxial media, i.e.,

€ 4
(6)) Q ij O
€H= o € , &= Oé‘ , ete., (42)
€3 £3

then (33)—-(35) imply
&L= 8y, (43)
¢/e=n/u=2/0=g;s, (44)
53/53 = 173/#3 = 23/0 = g%/gs. (45)

For this case, the wave “impedances” (i/€)1/2 and
(us/€5)Y2 are unchanged in the scaling. This property
will be used in Sec.III. Also, a simple calculation gives
the results that we can obtain from any orthogonal co-
ordinates (v1, v2, ¥3) with do? = f2(dv1)2 + f£(dv2)2 +
f£(dv3)2 a coordinate system (x1,x2, x3) having

{d02= Bl(ax1)2 + (dx2)2] + { F@(@x®)2/[F'(x3)]2}  (46)

x1= [(f,/f)dvl + const,  x2 =02, 3= F(9),
(47
if12
1,/fs = function of v! only. (48)

If we require only that both P and P’ have diagonal
media, then no restriction on g, is imposed. As a trivial
example of this and to illustrate the P'— P procedure,
consider P’ as a parallel plate waveguide with plate at
x = a and x = b, filled with uniform 75, £{-simple medium,
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and having a TEM z-propagating wave E® = (7/£)12H(»)
= exp(iwVEn z), Take the scaling (x,y,2) = (8, ¢,7) as
spherical coordinate, then (33)—-(39) right away gives a
legitimate P and its solution. The P is a conical wave-
guide with cones at § = a/c, and 6 = /¢ and filled with
diagonal simple medium
i) (€3]
f _HG
3 ]
£,/(c, sind)

(
&

(¢, sind)/c,
c,€g/(r? sing)/ (49)

and has a TEM propagation withvE®/c, = (5/£)1/2
(r sing/c,)H®) = exp(iwVEn 7). Here c, and c, are
arbitrary length constants,

{Il. PERFECT p,e-LOADED MATCH BETWEEN
CYLINDRICAL AND CONICAL COAXIAL
WAVEGUIDES

To illustrate the use of the scaling method, we here
apply it to examine and obtain a reflectionless and dis-
tortionless perfect match between a cylindrical (region I)
and a conical (region III} coaxial waveguide, The given
situation P in region I (see Fig. 1), which has perfectly
conducting boundaries at p = A and p = B 13 and is filled
with €, p-simple uniform medium, is a TEM incident
wave with E &) = H©@)(u/e)12 = [exp(iwVep z — iwt)]/p.
The solution of the problem may not be unique, and it is
the simplest solution we want to find. Of course, from
here on we use Euclidean 3-space and choose g,4 = 1,
£o; = 0.

A. Selection and design of the scaling match

For mathematical simplicity we examine only orthogonal
coordinates, and because of the nature of the problem we
choose rotational ones in 3-space. Also, since only TEM
wave is of interest, we designate the x3-direction as the
propagation direction and can try the “transverse iso-
tropy” (42)-(45) that leaves €4, fi, free as the simplest
general possibility.

Now the problem is to find a common P’ that underlies

FIG.1. Loaded perfect match between a cylindrical and a conical
coaxial waveguide,
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the whole range of regions I, III, and II which is the
matching section to be found. Then a P’ = P scaling will,
hopefully, give back the desired result by choosing dif-
ferent scalings for different regions. In region I the P’
as implied by the given P in region I is fixed. Through
the use of (36)—(39) and (42)—(48) the P’ is therefore
specified by a TEM wave

el = exp(iwvpe x3)/c, (50)
h? = (e/WV2 exp(iwVue x3)/c, (51)

in a Cartesian coordinate (x1,x2,x3) and in a Cartesian
parallel plate waveguide which has boundaries at x1 =
¢, In(A/pg) and x1 = ¢, In(B/p,) and is filled with the
medlum

ij i O
T=BY 1 . (52)

(pg/c?) exp(2x1/c.)

Here in I the (x1,x2,x3) = (c, In(p/p,), c,¢,2) is
obtained by using the cylindrical (p, ¢,2) as the

(v1, vZ, v3) to furnish the scaling, where €,,Pq are some
length constants to be restricted later.

To choose a P’ = P for region II from the above P’, we
first realize from the geometry of I and III that we need
a coordinate system for (v1, v2, v3) whose constant co-
ordinate-surfaces can carry a plane into spheres con-

vex w.r.t, the plane. The toroidal coordinates (7, ¢, 6)
provide just that.1¢ As to region III, of course, we use the
spherical coordinates (6, ¢,7) as the (v1, v2, v3).

Now, by using such (v?) to convert the (x¢) of P’ and by
making sure that the x¢ are continuous at junctions,
simple straightforward calculations from (42) to (48) and
the inverse of (36) to (39) give the required perfect
matching. This match is shown in Fig, 1 and has the pro-
perties listed in Table I.

Notice that in the above table F(8), G{r} in general are
dimensionless arbitrary smooth functions that satisfy
F(0) = 0, G(a/sind,) = tand /2, and the choices as shown

are the results of requiring €§3 = € in I and 628 = € in
Il. Also p, and a (> B> A > 0) are arbitrary length
constants. Arrows at the top of the table denote bound-
aries that divide the regions.

B. Remarks and discussion

Firstly, since only TEM wave exists, the match can be
realized by employing an isotropic medium using its
transverse isotropy. Physically, it is obvious that there
should be no reflection caused by u, € discontinuities and
changes since 1/£ and therefore p/e€ is an invariant con-
stant throughout the scaling. Also obviously, there
should be no distortion because the smaller (ue) near
the inner matching conductor n = 1, bends the plane
phase front from the cylindrical I into a spherical phase
front to match the spherical III.

TABLE 1.
Regions I =02 ¢g=0 i =0, ><r=a/sing, m
Quantities 9<6, <n
tan(e/z))
1 al; In[th(n/2)}1 + & In{——————~} +
x n(p/pg) a In[th(n/2)} (tan(el 72
x2 ap a¢ a¢
[= aF(8)] = a tan(6/2) [= aG(r)]=» —acotd,
x3 z and and
F(0) =0 Gla/sing,) = tan(6,/2)
8, =& (p/a) sinhn/(coshny + cosf) ¥(sin®)/a
&3 1 (= 1/(coshy + cos8)F’(6)) [= 1/aG' (1))
= (1 + cosd)/(coshn + cosb) 1
Boundaries
x1 = aln(4/p) p=A n=2 tanh'lA/a = 2 tan™ 1[(A/a) tan(8,/2)
to to
x1 = aIn(B/pg) p= n=2 tanh‘lB/a © = 2 tan” 1[(B/a) tan(9,/2)
0<A<B<a
Media
(€3]
/e =uly/n
(i) ij (coshn + cosd) <1 0) i
= [« 4] s —>77 O 6
o)/ (1+cos8) \0 1
(61} @) sinhn(1 + cosé)
[e(l) =@ O (1 + coshn)?
= £/84
and

@)
€@) = 53(5’3/5’%)]
Fields

[now ozij; = 0 for all regions, since ¢ = 0]

(coshn + cos6)

E eiwt e iwbes e
e (e™hez/p) [ l———
eiwﬁfga tan(6/2)
A o coshn + cosé
- N co [T P
xeiﬂ/ﬂ?i Xein;J_eatan(B/Z)
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The match so obtained is by no means unique. It is
merély the simplest one. In fact, any rotational co-
ordinates that can match smoothly with (p, ¢, z) at left
and (6, ¢,7) at right can be used to provide (x1,x2, x3) in
II for P’ = P.

Concerning the realizability of the loading the required
taper of y is difficult, Since for normal incidence there
is no reflection if and only if the impedance (e/p)12 is
constant and yet we need (ue) to vary to furnish a transi-
tion, it is impossible to achieve a perfect match by an
orthogonal scaling with only a varied € and a fixed p.
But oblique incidence immediately suggests itself a
Brewster angle tapering which may provide a perfect
match through a nonorthogonal scaling with a fixed p and
varying €. This and other possibilities of fixed-p match
are currently being investigated.
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For a certain geodesically incomplete, compact Lorentz manifold 7, we construct an analytic
non-Hausdorff extension in which no geodesic bifurcates. The extension is geodesically incomplete,
but is a maximal analytic Lorentz manifold in the sense that any further analytic extension has
bifurcating geodesics. We also obtain a-maximal analytic Hausdorff extension of the universal

covering space of T'. The latter extensioh is geodesically complete.

The positive definite metric tensor of a connected
Hausdorff Riemannian manifold induces a metric topo-
logy on the manifold equivalent to the manifold topology.t
Since a Hausdorff Riemannian manifold is a metric
space, Cauchy sequences can be defined. The Hopf-
Rinow theorem2 on connected Hausdorff Riemannian
manifolds states that Cauchy completeness is equivalent
to geodesic completeness. An immediate consequence of
this theorem is that a compact, connected Hausdorff
Riemannian manifold is geodesically complete.

This last statement is not true for pseudo~Riemannian
manifolds. Misner3 has given a metric with Lorentz sig-
nature defined on the (compact) 2-torus 7 that is geo-
desically incomplete. A compact, connected Hausdorff
manifold has no Hausdorff extension, i.e., it cannot be
properly imbedded (with codimension zero) in another
connected Hausdorff manifold. Therefore, any extension
of Misner's example must be non-Hausdorff.

Given a compact Riemannian or pseudo-Riemannian
manifold, it is trivial to construct non-Hausdorff exten-
sions that have bifurcating geodesics (e.g., simply dupli-
cate any point.) The Hopf—Rinow theorem implies that
any non-Hausdorff extension of a compact, connected
Hausdorff Riemannian manifold has at least one bifur-
cating geodesic. We will show that compact Hausdorff
pseudo-Riemannian manifolds may have non-Hausdorff
extensions in which no geodesic bifurcates. This will be
accomplished by constructing an analytic non-Hausdorff
extension of Misner's example. The extension is geode-
sically incomplete, but is a maximal analytic Lorentz
manifold in the sense that any further analytic extension
has bifurcating geodesics. We also obtain a maximal
analytic Hausdorff extension of the universal covering
space of T. The latter extension is geodesically com-
plete.

Consider the metric3
ds? = cosx (dy? — dx?) + 2sinx dxdy 1)

defined on the 2-torus T obtained from the (x, y) plane
by imposing the identification4

(x,y) = (x + dmm,y + n) for all integers m,n. (2)
The incomplete null geodesics3 y = 2 InA, x = (B + 3)7
where XA is an affine parameter and % is an integer, are
Killing horizons5:6 with respect to the Killing vector
fieldX=29,= 3/8y. The usual procedure for obtaining
an extension of the two-dimensional Lorentz manifold is
to introduce null coordinates. The transformation

¢ = —sin(zx —5mMe¥2, 5= cos(zx —5me V2 (3)
takes metric (1) into
ds2 = 8dtdn/(E2 + n?). 4)
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Metric (4) is analytic on the punctured plane M =
{(¢,m) € R21£2 + 52 = 0}, The Killing vector field in
(¢, n) coordinates is

X=—14@a, +n,), (5)

and the one-parameter group of isometries {U,} gener-
ated by X is given by

U, (&,n) = (Eet/2,net2), (6)

Let G = {U, }, a discrete subgroup of {U,}. Then T is
isometric to the quotient space M/G.

In the (£, n) coordinate patch, the geodesics of metric (4)
that approach (0, 0) are complete, but there are geode-
sics that run off to infinity with finite affine length. Con-
sider the transformation # = tan-1¢, v = tan-1n, which
maps M onto to punctured square [u| <7/2, |v| <n/2,
u2 + v2 # 0. In {u, v) coordinates (4) and (5) become

ds? 8dudv @
§4 =
sin2x cos2v + cos2u sin2v

and
X = — 3(sinu cosu 9, + sinv cosv 3,). (8)

Metric (7) and the Killing vector field (8) extend analyti-
cally to M =R2 — {(mn/2,nn/2)| m + n even}. It can
easily be seen that /7 is geodesically complete. The set
of zeros of X is N = {(mn/2,n1/2)| m + n odd}. The
Killing vector field X is a timelike rotation near its
zeros, and the null orbits of {Ut} are null geodesics and
are branches of bifurcate Killing horizons6 (see Fig. 1).
Let G be the analytic continuation of G to /7. Then M/G
is not a T, topological space (because any zero of X is
approached by an infinite sequence of points which will
all be identified under G) and hence not a manifold, but
(M — N)/G is a non-Hausdorff Lorentz manifold in
which no geodesic bifurcates.? Since M is geodesically
complete, we conclude that (i — N)/G is a maximal
analytic extension of T with no bifurcating geodesics.

From (3) we see that the universal covering space of M

FIG.1. The manifold
M, The solid lines are
bifurcate Killing hori-
zons. Each one of the
four branches of a bi-
furcate Killing horizon
is a null orbit of {U,},
and the four branches
meet at a fixed point of
U, (zero of X), The
dashed lines are space-
like and timelike orbits
of {U,}.
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is isometric to metric (1) defined on the (x, y) plane.
Thus, the universal covering space of M is an analytic
Hausdorff extension of the universal covering space of
T. Since M is geodesically complete, its universal
covering space is complete and, hence, is a maximal
Hausdorff manifold.
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The Kerr-Taub-NUT metric is a local analytic solution of the vacuum Einstein-Maxwell equations.
When the metric is expressed in Schwarzschild-like coordinates, two types of coordinate singularity
are present. One occurs at certain values of the “radial” coordinate where g,. becomes infinite and
corresponds to bifurcate Killing horizons; the other occurs at 8 =0,7r, where the determinant of the
components of the metric vanishes. It is shown that for nonzero NUT parameter the fixed points of
the bifurcate Killing horizons and the degeneracies at #=0,7 cannot all be covered in one manifold.
A maximal analytic manifold is constructed which covers the degeneracies at =0,7. It is
non-Hausdorff but contains maximal Hausdorff subspaces, topologically S°x R, which reduce to
Taub-NUT space for vanishing Kerr parameter. Kerr-Taub space can be interpreted as a closed,
inhomogeneous electromagnetic-gravitational wave undergoing gravitational collapse. Another
maximal analytic manifold is constructed which covers the fixed points of the bifurcate Killing
horizons and the degeneracy at 8=0. It is suggested that this manifold represents the superposition
of the Kerr geometry and a massless source of angular momentum at @ =1 characterized by the

NUT parameter.

l. INTRODUCTION

Many new exact solutions of the vacuum Einstein and
Einstein—-Maxwell equations have appeared in the litera-
ture in recent years. Most of the solutions (four-dimen-
sional metrics with Lorentz signature) have been found
by local methods and have coordinate singularities and
incomplete geodesics. If the curvature invariants are
finite at the coordinate singularities, it may be possible
to cover the singularities in an extension. Maximal ex-
tensions are needed in order to study the giobal pro-
perties of a metric. The purpose of this paper is to
study the global properties of the combined Kerr—
Taub—NUT metric first given by Demianski and New-
man! by an algebraic trick and later derived by Car-
ter,2 Kinnersley,3 Kramer and Neugebauer,4 Robin-
son et al.,5 and Talbot.® Fortunately, the information
needed for the global analysis can be obtained from the
symmetries of the metric. We are also guided by pre-
vious work on the Kerr and Taub—NUT metrics.7-15

When a metric has symmetries, it is possible to im-
pose various identifications on the metric. A metric
with a given identification (or no identification at all) de-
fines a manifold, and we can consider the extensions of
that manifold. A connected Lorentz manifold M is an
extension of a connected Lorentz manifold M, if a pro-
per submanifold (codimension zero) of M is isometric
to M. In this paper only analytic extensions will be con-
sidered. Non-Hausdorff extensions of Lorentz mani-
folds having no bifurcating geodesics may arise in a
natural way, and we do not wish to exclude them. Non-
Hausdorff Lorentz manifolds with bifurcating geode-
sics will not be considered because they are too patho-
logical for any physical interpretation. A necessary
and sufficient condition for a non-Hausdorff manifold to
have no bifurcating geodesics is given by Hajicek.13 We
will say that a connected Lorentz manifold with no bi-
furcating geodesics is maximal, if every further exten-
sion has bifurcating geodesics.

Although the Kerr—Taub~NUT metric can be expressed
in Schwarzschild-like coordinates, for nonzero NUT
parameter the singularities at 6 = 0, 7 are not the usual
degeneracies of spherical coordinates on the 2-sphere.?!
This problem was first encountered in the Taub—~NUT
metric.10 There are several identifications to impose
on the Taub~NUT metric that have physical interpre-
tations. Misner10 showed that the singularities at § =
0,7 in the Taub—~NUT metric are the degeneracies of
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spherical coordinates on the 3-sphere provided a cer-
tain identification is imposed on the metric. The f coor-
dinate essentially becomes an Euler angle coordinate on
S3 and thus is periodic. With this identification, the
fixed points of the bifurcate Killing horizons cannot be
regular points of the manifold!4,15 and the maximal
analytic extensions are non-Hausdorff.13 The Taub
region with this identification is interpreted as a cos-
mological model.11 Seeking to avoid a timelike periodic
coordinate in the NUT region, Bonnor12 imposed only
part of the identification considered by Misner. With
Bonnor's identification, the singularity at 6 = 0 and the
fixed points of the bifurcate Killing horizons can be
covered in an extension but not the singularity at § = 7.14
Bonner interpreted the § = 7 singularity as a massless
source of angular momentum.

In Sec.II we present the Kerr—=Taub—NUT metric in
Schwarzschild-like coordinates and discuss its local
properties. In Sec.IIIA we consider Misner's identifi-
cation and show that the singularities at § = 0,7 can be
covered in an extension. A maximal analytic extension
of the Kerr—Taub—NUT metric with this identification
is constructed in Sec.IIIB. A maximal analytic extension
of the Kerr—Taub—NUT metric with Bonnor's identifi-
cation is constructed in Sec.IIIC. The fixed points of the
bifurcate Killing horizons and the singularity at 8 = 0
are covered in the latter extension. Carter2 has shown
that the Hamilton—Jacobi equation for the geodesics in
the Kerr—Taub~NUT metric separates in certain coor-
dinate systems. We use this fact in Sec.IV in the dis-
cussion of the geodesics and show that the extensions
constructed in Secs.IIIB and ITIC are maximal analytic
manifolds. In Sec.V we summarize the results.

Il. KERR-TAUB-NUT METRIC AND LOCAL
PROPERTIES
The Kerr—Taub—NUT metric, represented here in
Schwarzschild-like coordinates,16
ds2 = (A 1dr2 + de2) + Z-1sin26(adt — pd¢p)?
— T 1a(dt — Ad¢)?, (1)

Z=7v2 + ( +acosd)?, (2)
A =72 2mr —12 +a2 + e?, 3)
A = asin29 — 2lcoso, (4)
Copyright © 1973 by the American Institute of Physics 486
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p=72 +12 +42 =3 + a4, (5)

where m,[,a,and e are, respectively, the Schwarzschild,
NUT, Kerr, and electromagnetic parameters, is a local
analytic solution of the vacuum Einsteih—Maxwell equa-
tions with electromagnetic field tensor

F =— 2eZ72[(Zdr — vdp)A\ (dt — Ad¢)
+ vdA A (adt — pdd)]-  (6)

When e is zero, the electromagnetic field tensor vanishes
and the metric satisfies the vacuum Einstein equations.
When a is zero, the metric reduces to the Taub—NUT
metric,17 and when ! is zero it reduces to the Kerr
metric.18

Two types of singularity may be present in a metric.
One occurs where the components g;; of the metric are
singular; the other occurs where the determinant of the
matrix (g,.].) vanishes. In metric (1), the first type
occurs where = or A vanishes; the second occurs at

§ = 0,7, A curvature invariant becomes infinite where
T vanishes,! but T is always positive for a2 < 12. We
will consider only the case in which the zeros of

Alr =7, =m + (m2 + 12 — a? — e2)Y/2] are real and
distinct. In this case, the singularities correspond to
bifurcate Killing horizons.?9;20 Metric (1) is nonsingu-
lar (except for the possible curvature singularity) in
three disjoint regions which are distinguished by the
ranges of the “radial” coordinate. The regions 7, <

¥ < o and — © < ¥ < 7 will each be called Kerr—-NUT
regions and labeled I and III, respectively, and the region
7. < v <7, will be called a Kerr-Taub region and
labeled II. In each of these regions 0 < 6 < 7,— 0 <

b < w,—o <t <0,

The Weyl tensor is of type D in the Petrov—DPirani
classification,21 and the two double principal null vec-
tor fields on region II, for example, are given by

N, =pa 13,3, +artd,, (7

where 9, = 3/0¢, etc. The vector fields have been norma-
lized so that VNtNi = 0. (All equations in this paper with

plus-or-minus signs should be read as two equations,
one with the upper sign throughout and one with the
lower sign.) The integral curves of these vector fields
give two shear-free null geodesic congruences,22 which
have nonzero rotation unless both a and ! vanish. Clear-
ly, 3, and 94 are Killing vector fields, and when a is

Zero

cos¢d, — cotd sing 9, + 2l csch sing 9,,
singd, + coté cos¢ 3, — 21 csch cosgd,, (8)

are also Killing vector fields.11

I1l. GLOBAL PROPERTIES
A. Kerr-Taub and Kerr-NUT spaces

For nonzero NUT parameter, the singularities at 8 =

0,7 are not the usual degeneracies of spherical coordi-
nates on the 2-sphere. Demiaiski and Newman?! showed
that the singularities are the degeneracies of spherical
coordinates on the 3-sphere provided a certain identi-
fication is imposed on the metric, the same identification
that Misner10 imposed on the Taub—NUT metric. That
identification on the Schwarzschild-like coordinates of
metric (1) is
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(0,8) =(p + (n + m)2m,t + (n — m)4m)
for all integersn.,m. (9)

Let M;, My, and M;;; be the connected Lorentz manifolds
obtained by imposing identification (9) on metric (1) in
the regions I, II, and III, respectively. We now show how
to obtain extensions of My, M, and My;; that are analytic
on $3 X R. The set of quaternions @ = {g =w + ix +

v + kz|lw? +x2 +y2 + 22 = 0} is a Lie group, diffeo-
morphic to S3 X R, and the left-invariant vector fields
are analytic on $3 XR. The dual 1-forms of the left-
invariant vector fields are also analytic, and metric (1)
with identification (9) can be expressed in the global
‘basis given by these 1-forms.

Left- and right-invariant vector fields in (w,x,y, 2)
coordinates can be computed from the definition of
quaternion multiplication23 and are given, respectively,
by

Xo= 3wd, +x3, +y3, +29,),
X, = 5 x93, +wd, + 23, —y3,),
X, = 393, — 23, + wd, + x3,), (10)
X3 = 3(— 23, +y3,— x3, + wd,),
and
Yo = zwd, +x3, +y3, +23,),
Y= 3 x93, +wd, — 23, +y3,), (1)
Y, = z(—y3, +20, + wd, — x3,),
Yy = 3(—29,— 93, +x3, +wd,).
They satisfy the commutation relations
[Xi’Xj] = Ci}f;Xk’
¥, Y]] =- Ci’finu (12)

[Xi, Yj] =0,

where Cf = ¢;;, for 1 < 4,j,k =< 3 and otherwise 0, ¢, be-
ing the totally antisymmetric symbol with €,,4 = + 1.
The ¢;;, are the structure constants of the rotation

group SO(3). SO(3) is covered twice by its universal
covering group SU(2), and SU(2) is isomorphic to the
group of quaternions of unit norm.10 The X; and ¥; for

1 =i < 3 are tangent to S3. The dual 1-forms of the
left-invariant vector fields are

w0 = 2|q|2@dw + xdx +ydy + zdz),
wl= 21g|-2( xdw + wdx + zdy — ydz), (13)
w? = 2lg|-2(— ydw — zdx + wdy + xdz),
w3 = 2|q|-2( zdw + ydx — xdy + wdz),
where |¢q12 = w2 +x2 +y2 + 22, and they satisfy
dwt = — 3CEwiA wi. (14)

The X; and w? are invariant under left translations
L, : q = pq and the Y; are invariant under right transla-
tions Rp: q > qgp.

Euler angle coordinates24 (8, ¢,¥) on S3 may be de-

fined by g =w + ix +jy + kz = e7/2ek%2e16/26k¥/2 or
w = e?/2 cos /2 coslp +¥)/2,
x = e"/2 sinf/2 cos(p — Y)/2,
y = e7/2 sin6/2 sin(op — Y)/2,
z = e"/2 cos8/2 sin(p + ¥)/2,

(15)
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where — 0 <7 < 0,0 < 9§ < n,and
@,¥)=(¢ + (n +m)21, ¥ + (n —m)2m). (16)

There are degeneracies at 8 = 0, 7, where the Jacobian
of the transformation vanishes. In (v, 8, ¢,¥) coordin-

ates the left- and right-invariant vector fields are res-
pectively,

Xo=19,,
X, = cosy 9, + cscd siny 95 — cotd siny 9, (i7)
X, =— siny 9, + cscod cosy 3, — cotd cosy g,
and %=
Yo =9,,
Y, = cos¢ 3, — cotf sing 3, + cscd sing 3, (18)

Y, = sing 9, + cotf cos¢ 9, — cscd cosé 9,
Y3 =03

and the dual 1-forms of the left-invariant vector fields
are

w0 =dr, .
wl = cosy df + sind siny do¢, (19)
w2 =— siny d6 + sinf cosy do,

w3 =dy + cosbdo.

The transformation ¢ = (2I)"1¢ for I = 0 takes metric
(1) into

ds?2 = ZA w92 + S(wl)2 + Z(w2)2 — 4127717 (w3)2
+ a2(2 — Z-1T')(sinf sinYw! + sinfcosyw?2)2  (20)
— 4la(l — =-1r')(sin 6 sinYw! + sind cosPw2)w3,
where
I'= A— a2 sin20, (21)

and identification (9) into identification (16). For a2 < [2,
this metric in (w,x,y,2) coordinates is analytic and has
Lorentz signature on

M, = {w,*,,2) € R4 ™ <w? + 2% +3% + 2% <},
and

My = {@w,%,y,2) € R4 e™ <w? +x% +y% + 2% < ™,
My =1{w,%,y,2) € R4]0 < w? +x%+92 + 22 <"},

Metric (20) defined on M; will be called Kerr—Taub space.
It reduces to Taub spacel? when a vanishes, in which
case Y and Y, become Killing vector fields in addition
to X, and Y. The Killing vector fields X; — Y3 =y3, —
%3, and X3 + Y, = wd, — 29, vanishat = 0(x =y =0)
and 8 = 7w =z = 0), respectively, and are spacelike
rotations.20 They cannot be represented as a linear
combination (with constant coefficients) of coordinate
vector fields where they vanish. The degeneracies of
Euler angle coordinates at § = 0,7 on S3 are like polar
coordinate singularities, where 6 = @ — ¢)/2 is an azi-
muthal angle coordinate near 6 = 0 and 0 = (¥ + $)/2
is an azimuthal angle coordinate near § =7. In {7, 6,
8,0) coordinates25 X; — Y3 =3; and X; + Y, =3,. It
can be seen from transformation (15) that the submani-
folds defined by § = 0(x =y =0) and 6 = 7w =z = 0)
are topologically cylinders, St XR. These cylinders are
totally geodesic.20
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The “radial” coordinate is timelike in Kerr—Taub
space, and the hypersurfaces of constant » are space-
like 3-spheres. The volume of these hypersurfaces
goes to zero as » approaches 7,. Kerr—Taub space can
be interpreted as a closed, inhomogeneous electromag-
netic-gravitational wave undergoing gravitational col-
lapse (see Brilll7 and Gowdy26). The timelike con-
gruence given by the vector field 9, has nonzero rota-
tion unless a vanishes, in which case the congruence is
orthogonal to the homogeneous hypersurfaces of Taub
space. Thus Kerr—Taub space has an intrinsic rota-
tion which vanishes when the Kerr parameter is zero.

Metric (20) defined on M; or M;;; will be called a Kerr—
NUT space. In the Kerr—NUT spaces the “radial® coor-
dinate is spacelike, and the hypersurfaces of constant »
are timelike 3-spheres and have closed timelike curves.
We show the relationship of M; and Mjy; to My; by giving
a maximal analytic extension of Kerr—Taub space.

B. Kerr-Taub-NUT space

Two distinct Hausdorff analytic extensions of Kerr-
Taub space can be obtained simply by straightening out
the null vector fields

N, =p(2lA)y 19, £9, + an 13y, (22)

The extensions are isometric to each other and repre-
sentative of what we will call Kerr—Taub-NUT space,
but they cannot be adopted simultaneously without aban-
doning the Hausdorff property. The transformation2?

¥, =y = [p(21a)dy

¢, = ¢ ¥ [anldr, (23)

Y =v,06 =290,

for v. <7 < 7, takes metric (20) into the metric

ds? = 5dp2 + Z-1(p2? sin20 — AA2)d$,2 — 4I2Z-1Tdy,2
— 41T 1(ap sin28 — AA)d$.dY,
F day dr + 2Ado dr
= S(wl)? + TW2)? — 422 1T (w3)2
+ a2(2 — =°1T') (sinf siny,w! + sind cosy, w?2)?
— 4la(1 — Z71T) (sing siny,wl! + sind cosy,w2)w3
F dowlw? £ 2a(sing sinY,w}! + sind cosy,w2)w?,

(24)
where w} are defined by placing the subscript + on w?,
¢,¥ in (19). Identification (16) becomes

(6,,¥,) = (¢, + (n +m)21,¥, + (1 —m)2m). (25)

We define vector fields X, ,Y; in (r, 9, ¢,,¥.) coordinates
and vector fields X; ,Y; in (r,6, ¢.,¥.) coordinates by

placing the subseript £ on X;,¥,,¢,¥ in (17) and (18).
Note that on Kerr—Taub space X3t =X5, Y3 =Y5,

E
wl=w%andN, =+ XO* =4 YO*. In @, 6, ¢.,¥,) coordin-
ates on Kerr-Taub space

M = 87, N = p(lA)’18w+ - ar + 2aA"18¢+,

(26)

and in {r, 9, ¢_, ¥ ) coordinates
N, =p(la)y 1, +3, +2a87%3,, N -— 2,. (27)

Both metrics (24) extend analytically to — o <7 < ¢,
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The transformation # = 2ly, gives Kinnersley’s3 form
of the Kerr—Taub—NUT metric. The degeneracies at

8 = 0,7 can be covered by transforming to (v,,x,,9,,2,)
coordinates defined by placing the subscript+ on w,x,y,
z,¢,¥ in (15). The vector fields Xi*,Yii,w;' in these

coordinates are given by (10), (11), and (13) with the
appropriate subscripts. The w} are the dual 1-forms
of the left-invariant vector fields X; onQ, =1{g, =w, +
ix, +jy, +kz,lq ] = 0} *

In w,,%,,¥,,2,) coordinates, metrics (24) for a2 < I2 are
analytic and have Lorentz signature on M, = {(w*,xi,yi,
z,) € R4lw2 +x2 +y2 + 22 = 0}. The hypersurfaces

v =7, of M, are null and are Killing horizons19,20 with
respect to the Killing vector fields

K, = (2) Y%, +ap 2y, {28)

where p, = v2 +12 + a2 i.e.,K, are null at¥ =7,, res-
pectively. In (», 6, ¢_,{.) coordinates

K, = (@)1, +ap;la,, (29)

and the null hypersurfaces » =7, of M_ are also Killing
horizons with respect to K, respectively. Thus,M, and
M_ are extensions of Kerr—Taub space that cover differ-
ent branches of the Killing horizons. In M, the null geo-
desics which are the integral curves of N, have been
extended across branches of the Killing horizons and
are complete, but the null geodesics which are the inte-
gral curves of N_ are incomplete. In M_ the integral
curves of N have been extended across different bran-
ches of the Killing horizons and are complete, but the
integral curves of N, are incomplete. This type of be-
havior of null geodesics in Taub~NUT space has been
discussed by Misner and Taubll and Geroch.28

Metric (24) with the upper sign defined on M, is iso-
metric to metric (24) with the lower sign defined on M_,
and either one will be called Kerr—Taub—NUT space.

The isometry is given by ¢, = — {., ¢, = — ¢_ or (w,,«,,
Y,,2) = (w,— x,—y.,2). The regions e <w?2 +x2 +
y2 +z2<wand 0<w?2 +x2 +y2+ 22 <e™ of M, and M
are isometric to the Kerr—NUT spaces M; and My,
respectively. Thus Kerr—-Taub—NUT space is also an
analytic extension of either one of the Kerr—NUT spa-
ces. When g is zero, Kerr—Taub-NUT space reduces to
Taub-NUT space.11

It will be shown later that when both extensions M, of
Kerr-Taub space are adopted simultaneously, the re-
sulting extension is non-Hausdorff. To obtain a maxi-
mal (non-Hausdorff) analytic extension of Kerr—Taub
space, an infinite number of copies of M, are patched
together in the same way that Eddington—- Finkelstein-
like coordinate systems are patched together in the
maximal analytic extension of the Kerr metric.8,14 In
this maximal analytic extension, M, and M_ overlap on
a Kerr—Taub or a Kerr—NUT space, and the transfor-
mation on an overlap region is obtained from (23). A
maximal (non-Hausdorff) extension of Taub space has
already been given by Hajicek,13

C. Bifurcate Killing horizons

When a is zero, N, and N. are surface-forming and can
be “straightened out” simultaneously in one coordinate
system.14,15 A vector field is straightened out in a
particular coordinate system if the images in the coor-
dinate patch of the integral curves are straight lines.
Such a coordinate system for the Schwarzschild metric
which extends analytically to cover the bifurcate Killing
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horizon was given by Kruskal.2? Although N, and N_ are
not in general surface-forming, Boyer and Lindquist®
have given a generalization of Kruskal’s method for the
Kerr metric which is also applicable to the Kerr—Taub~
NUT metric. However, the fixed points of the bifurcate
Killing horizons cannot be covered in an analytic exten-
sion when identification (9) is imposed. Therefore, we
will consider an analytic extension of the Kerr—Taub-
NUT metric with only part of identification (9). Rather
than proceeding with the generalization of Kruskal coor-
dinates, an alternative method is given which is based on
the fact that the pairs of vector fields N, K, and N, K.
are surface-forming. (The pairs of vector fields N,, K,
and N,, K_ are also surface-forming). The new method
will be compared with the method of Boyer and Lind-
quist.

The transformation , = 2/, + ¢,), ¢, = ¢, takes met-
ric (24) into
ds2? = d62 + Z-1(p2? sin29 — AA2)d¢2— Z1Tdt2

— 2(a sin20 — 2-11A)di do, ¥ 2t dr = 2Ade,dr,

30)
where
A = a sin26 + 4 sin26/2, (31)
p=v2+(l+a)2=2+dA, (32)
and identification (25) becomes
(¢,,8,) =(p, + (n +m)2m,t, + 8lnm). (33)

Metric (30) with the upper sign is Demiariski and New-
man’s! form of the Kerr-Taub-NUT metric. In {, 6,
¢., ) coordinates

N+ = ar’

K, = Bﬂ:pt- lat+ + ap;13¢+,

X3— Y3 =— a¢+,

X3+ V=413, +3,,

(34)

where p, =72 + (I +a)2,and in (r, 6, ¢, ) coordinates

N=-2,
K, =p,p;13, +ap;1d,,
X,— Yy =—12,,

Xy + ¥y =40, +3, .

(35)

Now consider metrics (30) with identification (33) for

n = 0 and all intergers m. The degeneracy at 8 = 0 is
like a polar coordinate singularity in these coordinates
and since the ¢, coordinate is periodic with period 27,
the degeneracy can be covered. Consider the extensions
of metrics (30) that cover the § = 0 degeneracy. These
spaces can be described as the universal covering
space of Kerr—~Taub—-NUT space with the § = 7 cylinder
deleted, and a maximal analytic extension of them will
be given by forcing the Killing vector fields K, into the
form of timelike rotations.20 In these spaces the totally
geodesic submanifold defined by 0 = 0 is topologically a
plane and the 6 = 7 singularity cannot be covered in an
extension.14 We need to consider only one of the met-
rics (30), say the one with the lower sign.

We will assume that p, = 0 and define

—Ki = Et—lpiKt = at_ + aE:t_laqi_' (36)
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The vector fields N, K,, and X5 — Y4 commute with each
other and are lmearly mdependent and therefore all
three can be represented as coordinate vector fields in
one coordinate system. Similarly, N, K_, and X3 ~ Y,
can be represented as coordinate vector fields in ccne
coordinate system. The transformation®

@, =¢ —ap;lt, t.=t (37

takes metric (30) with the lower sign into the metric
ds? = 2d62 + -1(p2 sin26 — AA2)dg2

~ P;2Z7YZ2A — a2(p — p,)? sin26]dt2

+ 2071Z-S, AA + ap(p — p,)sin26]dtdg,

+ 2p,1%, didr — Zﬁd@dv, (38)
where Z, =72 + (I + a co0s6)2 =p, — aA. In (r,0,0,t)
coordmates

N=-3, K=3, X-Y3=-3, (39)

Xy + Yy =4, + (1— dap V)3,

and in {, 8, @, 1) coordinates
N=-3, i{-:at.’ X3 —Y¥3=—3g (40)
X, + Yy =4, + (1— 4lapz1)3;.

Thus @, is periodic with period 27,

‘We now seek coordinate systems (§,,1,, 9,?;51) such that
the bifurcate Killing horizons are defined by £, =0
and

K, = K*("tani — sg*ag*), (41)
where K, are constants. We want §, and 7, o depend
only on ¥ and {_. The vector field N is straightened out
in (7,6, ¢,,t.) coordinates, and ¥ is an affine parameter
of the integral curves of N.. This property can be re-
tained in (§,,7,, 9, ¢,) coordinates by requiring N, to be
a product of the coordmate vector field 3, by a func-~
tion of n,. The §, coordinate will then be an affine
parameter of the integral curves of N.. In (§,,7,,6,9,)
coordinates, N. = — (3§, /37 )2, 6, — @n/97r), - Thus,

FIG.1. Bifurcate Killing horizons. 1
and I label Kerr—NUT regions and

II labels Kerr—Taub regions. Adjacent
members of the infinite sequence of
coordinate patches (¢,,7,,9,3,) over~
lap on regions 1, > 0,1. < 0 or 1, < 0,
7. > 0, and the transformations be-
tween these regions are given by Egs,
(47). The vector fields N_ and K, are
tangent to the submanifolds of con~
stant @ and @,, and the vector fields
N_and K_ are tangent to the submani-
folds of constant § and ¢ .
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we want 7, to depend only on¢_ and 3¢, /97 to depend
only on7,.

The transformations are restricted to the form

Eﬁ :fty + 8 = hi; (42)
where f,,g,,and k, are functions of ¢_.. In (¢,,7,,6,9,)
coordinates K, = (agi/at)a + @n, /2t )3, ,and trom
{(41) we see that f, + %, f, = 0 gi + K g, = 0,and
h, —K,h, = 0, where the prime denotes dlfferentlatmn
with respect to £ . Thus f; = a,e Rt e =g
and k, = y,e"*™ where q,, 8,, and v, are constants.

For the bifurcate Killing horizons to be defined by

£.n. = 0, we must choose 8, /o, = —»,. Without loss of
generality, we arbitrarily set &, = 1 and y, = +1 and
finally arrive at the transformations

= —r)e™, o= et (43)

The constants Fét are still to be determined. The in-
verse transformations are

vy =% En +v,

=i ), (44)

and metric (38) in (£,,n,, 0, ¢,) coordinates becomes

ds? = £d§2 + £-1(p2? sin2g — aAA2)dg?2
+ K;20;257 120 — 7,)2[ 26,5, 5,20 ~ 7,)
— T2A +a2(p — p,)? sin2¢]dn2
+ 26 1p0A51E, r — 7, ) Y2, AA
+ap(p — p,) sin2¢)dn,do,
+ 2 1p; 1T, dE dn, F 2A(ndE, + £dn)do,. 45)

If we choose

=300, — 7)), (46)
metrics {45) extend analytically to the entire (£,, n&)
plane. A maximal analytic (Hausdorff) extension is
given by patching these meirics together as indicated in
Fig.1. [See also Fig. 1 of Ref. (7) or Fig.1 of Ref. (14),
where a two-dimensional submanifold is drawn rather
than coordinate patches.] The transformation between
overlap regions 7, > 0,7 < O or 7, < 0,7. > 0 is given

€+T’+ +r,=—&n + Y,
#;1nin,! =k1ininl, (4"
P, — @, =ak;1 (P71 —p; Y Inln, |,

In (,,7,,6,9,) coordinates, N = — |5, |13, ,and is singu-

lar at 1, = 0, but the vector field N_ = In*lN =—29, is
analytic and satisfies Vz N. = 0. The vector field N is
more complicated in (E*,ni, 8, ¢,) coordinates. Although
the integral curves of N, are not complete in any one of
these coordinate patches, they are complete in the maxi~
mal analytic extension,

When ! is zero, @, is also an azimuthal angle coordinate
near § = 7,and the singularities at 6 = 0,7 correspond
to the usual degeneracies of spherical coordinates on the
2~sphere, Thus for ! = 0, metrics (45) give a maximal
analytic extension of the Kerr metric which is isometric
to the one given by Boyer and Lindquist® when e is zero
and by Carter? when ¢ is nonzero. When ¢ is zero,
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metrics (45) give a maximal analytic extension of the
Taub~NUT metric with the ¢, coordinate identified
modulo 27.14 When !/ and a are both zero, these metrics
give a maximal analytic extension of the Reissner-
Nordstrom metric39; and when e is also zero, metric
(45) with the upper sign becomes

ds2 = 8mEZ(En, + 2m) ldn2 + 8mdédn,

+ (&7, + 2m)2(d02 + sin20dp?), (48)

and is isometric to Kruskal’s2? extension of the
Schwarzschild metric. Similar coordinate systems for
the Schwarzschild metric that cover the Kruskal dia-
gram have previously been given by Israel31 and Pajers-
ki and Newman32,

When @ and e are zero and ! is nonzero, Bonnor!2 has
interpreted region I as the superposition of the Schwarz-
schild geometry and a massless source of angular
momentum at 8§ = 7 characterized by the NUT para-
meter. We therefore suggest that metrics (45) with the
@, coordinate identified modulo 27 give a maximal analy-
tic extension of the superposition of the Kerr geometry
and a massless source of angular momentum at § ==
characterized by the NUT parameter,

A generalization of Kruskal coordinates for the Kerr—
Taub—NUT metric can be given by first applying the
transformation8

¢, = ¢ —ap;lt, t=t, (49)

to the Schwarzschild-like coordinates of Sec.II. For
(r,9, ¢, t) coordinates on region II

N, =pAa 13,3, +ar1(1— p;lp)a%, K, =2, (50)
and for (r, 8, ¢, ) coordinates on region II

N, =pa19, 22, +ar*(l—pp)p,, K =20, (51)
We apply the methods for extending two-dimensional
Lorentz manifolds30,33 to the vector fields F~13, + 9,
where F = p~1A, and arrive at the transformatlon

u, =t exp(k, fF'ld'r) sinhk, ¢,

v, =+ exp(k, [ F-ldr) coshk, ¢ (52)
r—r, |Y2r — 7, Ki/2kz
=+ * e"” coshx,¢,
y:i: Tﬁ:
where
Fl=14+3k —7v)l+5cllr — )2, (53)
K, = 3p;10r, — 7). (54)

The transformation with the upper sign maps region I
onto the quadrant 1#| < »,, and the transformation with
the lower sign maps region Il onto |u_| <—u . In
(.,2.,0,9,) coordinates

N, == ilo, F w20, £0,)
+an (1 —prip), , (55)
K, = K+(1)+8u+ + u+av+),
and in @_, v, 0, ¢.) coordinates
N, =« Fu |12 @, %3,)
+aa (1 — pp), , (56)
K =« (w3, + u-au_),
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where
f2 = k2 |Fexp(— 2«, fF‘ldr)I

1'Ki/K ¥

Y7 ~2k,r
e .

= r2k2p-1 (57)

S

It is not necessary to compute metric (1) in Kruskal-
like coordinates (,,v,, 9, ,) and verify that it extends
analytically to the entire (u .»v,) plane and, in particular,
covers the bifurcate Killing horizons defined by u2 —

v2 = 0, since that has already been accomplished by
(45). The transformation (49) was needed to ensure that
K, would go into the form of a timelike rotation when
transformation (52) was applied. The Kruskal-like coor-
dinates treat the vector fields N, and N_ in a more sym-
metric fashion than the enlarged Eddington- Finkel-
stein-like patches (£,,n,, 6, ¢,), but the latter has the
advantage that the metric in these coordinates is given
explicitly.

Although we only considered identifying @ modulo 27
in metric (45), we can impose the further identification
(33). In (¢,,7,, 9, @,) coordinates

X3—Y3 :—aﬁ,

_ _ (58)
X, +Y;= 4lxi(niant—— giagi) + (1— 4lap;1)a¢i,
and identification (33) becomes
(‘Eiy n,, e’ai) - (gie—SIKinn’ ,r’ieSlEimr
6,9, + (n +m)2r — 8lap, nm).  (59)

Under this identification, metric (45) with the zeros of
K, deleted is compatible with the atlas of the non- Haus-
dorff extension of Kerr—Taub space of Sec.IB. Any
two points on different branches of a Killing horizon and
in the same subspace of constant § violate the Haus-
dorff property. It can be seen from (59) that if lap;! is
rational, the orbits of K are closed (diffeomorphic to
S1) and the submamfolds of constant 6 and ¢, (Fig.1)
are non-Hausdorff. However, if lap is irrational, the
orbits of K, are open (dlffeomorphlc to R) and the
submanifolds of constant 6 and ¢, are Hausdorff, but
their topology is not the relative topology.34 If the
zeros of K are not deleted, the space given by identi-
fication (59) is not even a manifold, because it is not a
T, topological space.14,15 Thus the zeros of K, cannot
be covered in an analytic extension of Kerr—Taub
space.

The non-Hausdorff property occurs only on the hori-
zons and causes no geodesics to bifurcate.13 The
causal violations (closed timelike curves) in Kerr—NUT
space are more disturbing than the non-Hausdor{f pro-
perty. However, the Killing horizons are also Cauchy
horizons with respect to any spacelike hypersurface of
Kerr—Taub space, and the only way of establishing a
relationship between Kerr—Taub space and a Kerr-NUT
space is by an analytic extension.1! The stability of
Kerr~Taub space should also be considered.35

IV. GEODESICS AND ORBITS

We will follow the notation of Carter in Ref.9 fairly
closely in the discussion of geodesics and the orbits

of charged particles. We will show that all geodesics
in the non-Hausdorff extension of Sec.IIB are com-
plete except those approaching the zeros of K, and that
all geodesics in the Hausdorff extension of See.IIIC are
complete except those approaching the zeros of X; +
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Y;. This implies that the extensions are maximal analy-
tic Lorentz manifolds.

The equations of motion of a test particle of mass p and
charge € are given by

wDui/dr) = eF iy, (60)
where u® =dxi/dr,D/dr denotes covariant differentia-
tion along the curve x#(r) with respect to proper time 7,
and F is the electromagnetic field tensor. If A is a
covariant vector potential satisfying

F = 2A, (61)

the equations of motion can be derived from the Lagran-
gian

L = 3844 + €A i, (62)

where the dot denotes differentiation with respect to an
affine parameter A related to proper time by

T = uA. (63)
The condition (63) is equivalent to the normalization
gi].fcia'cj = — p2, (64)

For ¢ = 0 and p2 =+ 1, 0, we obtain the spacelike, time-
like, and null geodesics.

The Hamiltonian
H = %gij(Pi - 6&)([)]- - GAJ)’ (65)

where the momenta are defined by

b= oL — g+ €4, (66)

is itself a constant of the motion, since it does not ex-
plicitly depend on A.

From (64) we see that
H=—;p2. (67)

We will use metric (24) in Euler angle coordinates and
the vector potentials

A, = — ers-1(Ady, — Ado,), (68)

L =

which satisfy (61). Let G be the nonsingular linear map
induced by the metric tensor field that takes vector
fields into 1-forms. If X and ¥ are arbitrary vector
fields, then GX is the 1-form defined by

GX(Y) =g(‘X7 Y)’ (69)

where g is the metric tensor field. In terms of the 1-
forms w, = GN,, we can write (68) as

, = erZluw,, (70)
From (24) the momenta are
p, =+ Ad, ¥20y,, bp, =36,
po. = Z-1(p2 sin26 — AA2)$, — 21T 1(ap sin26 — AA)
+
X, + A7 + eerZ 14, (1)
p, =— Az (ap sin20 — AA)p, — 42Z71TY,
+
¥ 2lr' — 2leerz1.
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The contravariant form of the metric (24) is

(9,)2 = Z71A(3,)2 + 2‘1(66)2 F ZaZ'l(a,,)(a%)
F (zz)-lp(a,)(ah) + =71 csc26(3y )2
+
+ (ZZ)‘lAcsc29(a¢i)(awi) + (4122)'1A2csc29(a,pi)2,
(72)
and the Hamiltonian becomes

=35 ap2 +p2 2[ap¢,i + (21)-1p11>¢i + eerlp,

+ csc20[ py + (21)—1pr*]2}. (73)

From the Killing vector fields X; and Y; we immediately
obtain two constants of motion

1)¢i = q’, Pwi = ‘I/, (74)

the constants & and ¥ being independent of the plus-or-
minus sign.

From (65) the Hamilton—Jacobi equation is

ool - Al

where S is the Jacobi action. The action separates? in
the form

=3u2\ + &9, +TY, + 5, +S,, (76)

where S, is a function of § and S, of ». Substituting (76)
into (75), we find that

ds,\ 2
<7i’9i> + csc20[® + (1) 1¥wA]2 + u2(l + a cosf)?
as,
= — A(dS,/dr)2 + 2[a® + (20} 1¥p + eer](d;> — p2re,
(77)

Both sides of (77) must be equal to a fourth constant of
motion, which we denote by X. It is positive when p is
real,i.e., for charged particle orbits and timelike and
null geodesics. Since p, = 3S5/26 and p, = 3S/3r, X can
be expressed in terms of the momenta;

P& + csc20[® + (21) W A2 + p2(l + a cosf)2 = X,

Ap2 F 2Jad + (21)W¥p + eer]p, + p2r2 =— K. (78)
These equations along with (74) give a complete set of
first integrals. Substituting (71) into (78), we can read
off the covariant components K;; of a Killing tensor
field36 satisfying

Kijici:’ci = X. (79)
The contravariant form of the Killing ténsor field is

K= ANN +726,)?, (80)

where (3))2 is given by (72) and NN is the symmetric
product of the vector fields N, and N. defined by

NN =3 (N,®N +N.® N). (81)

This Killing tensor field has been obtained in an invari-
ant way by Hughston et al.37 From (77) we have

ds, 9
~g =8, =4 @& P + vR), (82)
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where the functions ©(8), P(r),R{r) are defined by

© = X — csc26[® + (2)1WA)2 — p2( + a cosh)?,
P=ad + (2A)y¥p +eer, R =P2- Ap2r? +X).

(83)
The choice of signs for V@ and VR is independent of
each other and of the plus-or-minus sign.

Thus the Jacobi action is
[}
S=1iu2\ +p, + WP, + [ VBde + [ Al P+ JR)dr,
(84)

and by differentiating with respect to X, u2, &, ¥, the
equations of motion are solved by the quadratures

2= "%, (85)

5 = fﬂ {+a 3gs9)2d9 + f’?:;flr, (86)

g, = [0 B S AINAMS 8 (1, B,
(87)

W, = feAcscze{@.\/-g (21)1wAlde f‘*’% (1 . %)(Z;S)

We immediately see from (85) and (86) that for a2 < 2
Kerr—-Taub-NUT space is a maximal Hausdorff mani-
fold since it has the property of distant boundaries,!

i.e., every geodesic that is not contained in some com-
pact set has infinite affine length.

From (74) and (78) or from (85) through (88) we obtain
the first order system of differential equations:

6 = VO, - (89)
v =R, ' (90)
T, = csc20[d + () 1WA] ¥ ar 1[(yR) £ P],  (91)
AP, = Acsc20[® + () WA]F pA l[(VR) + P]. (92)

A geodesic will be incomplete in the coordinate patch
(r,8,d,,¥,) only if it reaches § = 0,7 or approaches a
branchof aKilling horizonin M., The latter occurs where
A vanishes. If P is nonzero where A vanishes, then
|P@,)/YR@,) = 1. The second integral with the upper
sign in (87) and (88) diverges at» =7, when P{,)/
VR(r,) = 1. In this case, the integrals with the lower
sign do not diverge, and the incomplete geodesics can
be continued in the (, 8, ¢, {.) coordinate patch. Simi-
larly, when P(r,)/vR(r,) = — 1, the incomplete geodesics
in M_ approaching a branch of an horizon in M, can be
continued in the ¢, 8, ¢,, Y.} coordinate patch.

Finally, there is the case in which P vanishes at a zero
of A, From (83) we see that R has a zero where P and
A both vanish. We need to consider only the case in
which R has a simple zero, since the integral for A
diverges when R has a double zero. In this case P/vR
goes to zero as a zero of A is approached, and the inte-
grals for ¢, and ¥, diverge. This means that the geo-
desic is incomplete in both coordinate patches (v, 49, ¢,,
¥,) and is approaching a point of the 2-surface where
K, is zero. The geodesic can be continued through this
surface in the extension of Sec. ITIC provided it is not
also approaching a zero of X; + Y.

We conclude that for a2 < [2, all geodesics in the non-
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Hausdorff extension of Sec.IIIB are complete except
those approaching the zeros of K, and all geodesics in
the Hausdorff extension of Sec.lIIC are complete ex-
cept those approaching the zeros of X; + Y,;. Thusboth
extensions are maximal analytic Lorentz manifolds. In
case a2 = [2, it can be seen from (89) and (90) that both
extensions have the additional incompleteness at the
curvature singularity where Z vanishes.

V. CONCLUSIONS

The Kerr—Taub—~NUT metric has been represented in
various coordinate systems for different purposes, It

is easy to recognize the special cases of the metric
when various parameters are zero in Schwarzschild-
like coordinates. The Cartesian coordinates (w,,x,,y,,
z,) on R4 — {0} give a one-map atlas of Kerr-Taub—~NUT
space. However, computations in these coordinates are
not very practical, and Euler angle coordinates are more
desirable for this purpose. The coordinate systems
(¢,,m,, 0, 9,) were constructed to cover the bifurcate
Killing horizons and also to show how the non-Haus-
dorff property arises when M, and M_ are patched to-
gether,

The Kerr—Taub—NUT metric is not particularly simple
in any coordinate system. Fortunately, it was not neces~
sary to work with the metric directly, since it was pos-
sible to carry out the global analysis as an analysis of
the vector fields N,, K, ,X; — ¥ and X; + Y5. The vari-
ous coordinate transformations were derived by re~
quiring some of these vector fields to have a specific
form. The global problems that were encountered in
the analytic extensions can be explained in terms of

the Killing vector fields K, X; — Y5, and X, + Y.

The types of zeros of a Killing vector field X (or fixed
ints of the local one-parameter group of isometries
U,\} generated by X) in a 4-dimensional Lorentz mani-
fold have been invariantly characterized by Boyer.20
Let X(p) = 0 for some point  and assume that X is not
identically zero on a neighborhood of p. We define
£, = (dw)ji = (V,w);, where w = GX. Then the invari-
ants

£, *E9, (93)
LA (94)

>

[Taas

evaluated at p are the invariants of the infinitesimal
generator £ (p) of the Lorentz transformation UA*(p),

where U, is the differential of the map U, :m — U, (m).

(*Eii is the dual of £%7.) The invariant (93) evaluated at
a fixed point is zero for spacelike and timelike rota-
tions, and invariant (94) evaluated at a fixed point is
positive for spacelike rotations and negative for time-
like rotations. The fixed points of spacelike and time-
like rotations are not isolated but form a totally geo-
desic 2-dimensional submanifold called the fixed point
surface,.

The invariant (94) of X; — Y5 or X, + Y, evaluated at a
fixed point is 2. In general,if X is a spacelike rotation
near p and X is represented as a coordinate vector
field 3,, then ¢ must be periodic with period 27/
[5&,;()E¥(p)]/2 in order to avoid a “conical” singula-
rity at p. Misner19 and Demianski and Newman? dis-
covered identification (33) by seeking the identifications
that permit the zeros of X, — Y, and X; + ¥, to be
covered. The invariant (94) of K, evaluated at a fixed
point is — 2«2,

If the zeros of X; — Y5 and X; + Y, are covered, the
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Ker

X3-Ys X3+ Vs

21r¢,

FIG. 2. Surfaces of transitivity for nonzero NUT parameter. For § #
0, 7, the Killing vector fields X; — Y5, X3 + Y3, and K, are tangent to
the submanifolds of constant ¢ and 7, and their directions at (¢,¥) =
(0, 0) for a typical choice of constants m,l,a, and ¢ are indicated by the
arrows. When identification (16) is imposed, the 2-torus is obtained by
identifying opposite sides of the square. When a is zero, K, = K_=
(2)13,.

orbits of X; — ¥, and X5 + Y; are closed and the sur-
faces of transitivity for 8 = 0,7 are 2-tori (see Fig.2).
Thus the orbits of K, are either closed or dense in a
2-torus. In either case the zeros of K, cannot be
covered in an extension. In the universal covering
space of Kerr—Taub-NUT space with the zeros of

X, + Y, deleted, the orbits of X; + Y5 are “unwrapped”
and the zeros of K, may be covered in an extension
provided p, = 0.
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An improved version is presented of Ehlers, Schild, and Pirani’s axiomatization of the differentiable
and causal structures of space-time. It is shown that, under certain physically reasonable axioms,
the properties of freely falling particles and light signals define a causal and differentiable structure
on space-time. Further, it is shown how the causal structure define a causal and differentiable struc-

ture light signals propagate along conformal null geodesics.

INTRODUCTION

The normal development of general relativity begins
with two hypotheses. The first is that space—time can
be represented as a differentiable manifold and the
second is the chronometric hypothesis: that there is a
metric tensor (g, in local coordinates) defined on the
space~-time manifold and that the time interval between
two events x¢ and x¢ + dx¢ on the world line of a stan-
dard clock is given by (g, dx%dx?)1/2, From these two
hypotheses all the geometric structures of space—time,
its causal, conformal, and projective structures can be
very easily derived. The two geodesic hypotheses are
then introduced to define the behavior of light signals
and the motions of free falling particles. However, this
approach has been frequently criticized, in particular
by Ehlers, Pirani, and Schild! on the following grounds:

(a) Whereas in this approach the whole mathematical
structure of general relativity can be obtained from

just two axioms, the physical origin and meaning of each
of the derived geometric structures is correspondingly
obscured. There is little scope for modifying the theory,
by, for example, rejecting the metric structure but re-
taining the conformal and projective structures.

{(b) Once the metric coefficients g, have been defined
by the chronometric hypothesis, there is no overwhelm-
ing physical justification for postulating that these co-
efficients also determine the motion of freely falling
particles and light signals, via the geodesic hypotheses.

(c) It has been shown by Marzke and Wheeler? and by
Kundt and Hoffman3 that it is possible to construct a
standard clock from the paths of freely falling particles
and light rays. Thus the geodesic hypotheges alone
imply a physical interpretation of the metric in terms
of time, independently of the chronometric hypothesis.
Then either the chronometric hypothesis is redundant or
else it is reduced to a statement of the equality of gra-
vitational time, measured by geodesic clocks, and atomic
time, measured by standard clocks: Such a statement is
out of place in a theory which does not embrace both
atomic and gravitational phenomena.

Another objection concerns the mathematical construc-

tion of the theory, rather than its physical interpretation.

It is usual to impose certain additional restrictions on
physically reasonable space~times. The least restric-
tive of these is that there should be no closed nonspace-
like curves, but other causality conditions, such as the
strong causality condition,4 can also be justified in
physical terms, Now the metric tensor &, cannot be
defined independently of the background manifold, and
yet even without any causality condition, the metric,
which is an entirely local structure, imposes certain
restrictions on the global topology of the manifold (for
instance, there are very few manifolds on which it is
possible to define a metric which is homogeneous and
spatially isotropic). With the causality condition, the
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situation is even worse: For instance, it has been shown
by Geroch® that, under certain conditions, a 4-geometry
cannot have two slices (roughly, spacelike sections) with
different topologies unless it is acausal. This is a re-
striction on the topology of space—time which cannot be
formulated until the metric has been defined, and yet
the metric cannot be defined until the background mani-
fold has been specified. Of course,in practical terms,
this is not a problem. The field equations for the metric
can, in any case,only be solved locally: The global topo-
logy of space~-time is then treated as an extension prob-
lem. It does,however,lead to certain difficulties for
instance in the definition of a singularity. There is a
perfectly clear intuitive idea of what is meant by a
singularity and by such statements as “in the neighbor-
hood of a singularity”,but in general relativity,because
a singularity is a place (in some sense) where the theory
breaks down, singularities can only be discussed in
terms of geodesic incompleteness;this is an inevitable
consequence of the fact that general relativity is essen-
tially a local theory; it only says anything about the
geometry of space—time in the locality of nonsingular
points. The situation is doubly unsatisfactory, firstly
because singularities become a global problem whereas
one feels intuitively that they should be a local pheno-
menon and secondly because at least the projective or
the Weyl structure (and hence an idea of geodesic in-
completeness) is needed even to define a singularity;
and yet it seems that it should be possible to give a
definition in terms of more primitive structures: that,
for instance, a singularity should be a point where the
differentiable structure of the background manifold
breaks down. This is not a useful definition if the back-
ground manifold is fixed and independent of the physical
processes happening in it.

Various attempts have been made at giving a local
characterization of a singularity by adding the singular
points as a boundary on a geodesically incomplete space-—
time. For instance, Geroch® does this by identifying
various classes of incomplete timelike geodesics. The
problem is that there are many such possible boundaries
with no overiding physical reason for choosing one
instead of another and that it seems scarcely logical to
define the topological structure of space-time at a singu-
lar point in terms of, for instance, the world lines of
freely falling particles but to take the differentiable and
topological structure at nonsingular points as absolute
and fixed. It would be more reasonable to define all the
existing geometric structures of space—time, both at
singular and at nonsingular points, in terms of more
primitive concepts, such as the world lines of freely
falling particles and light signals, and to define as sin-
gular a point of space—time where one of these geometric
structures breaks down. Even if this procedure did not
lead to any radically new techniques for analyzing sin-
gularities, it would at least provide a criterion for choos-
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ing the most physically reasonable boundary on an in-
complete space—time,

Ehlers, Pirani, and Schild! have shown how the projective,
conformal, Weyl and metric structures of space-time can
be built up successively from a few physically well-
motivated axioms: Each axiom can be thought of as the
reason for believing in a certain geometric structure
which is normally derived from the chronometric hy-
pothesis. The basic mathematical objects are taken to

be two of the simplest objects in physics: light rays and
the paths of freely falling particles (thought of as one-
dimensional manifolds). The concept of a standard clock
is abandoned completely.

The purpose of the present paper is to present a rigorous
derivation of the differentiable and causal structure (in
the sense of Kronheimer and Penrose4) of space—time
from axioms concerning much the same primitive con-
cepts as those used by Ehlers, Pirani, and Schild?
(except that the idea of -a light signal between two events,
rather than a light ray in space—time, is taken as funda-
mental) and thus to complete the resolution of the diffi-
culties stated above. The criterion for accepting a
particular axiom is that it should have a simple and
intuitively obvious physical interpretation and that it
should involve only concepts introduced in previous
axioms. At each stage the physical interpretation of the
axiom is stressed: Thus the axioms together can be
thought of as reasons for believing in the differentiable
structure of space-time,

The only global restrictions imposed on space—time

are introduced right at the beginning, in Axioms la and
1b, which deal, essentially, with the relation between the
causal and topological structures (a local version of
Axiom 2 can, in fact, be used without loss of anything but
simplicity). Thus it is possible, at least in principle, to
avoid the unsatisfactory feedback in the normal develop-
ment, where local structures impose restrictions on a
previously defined global topology. Further, Axioms la
and 2b express properties which can reasonably be re-
quired of any physical space—time, even one with sin-
gularities. Thus the breakdown of any one of the proper-
ties expressed in the other axioms can be taken as the
definition of a singularity in space—time: This definition
will not depend on the global structure or the projective
structure.

The main purpose of the paper is to give concrete ex-
pression to a point of view: that, even in classical rela-
tivity theory, the continuum structure of space-time
should not be taken as absolute but should be derived
from more primitive and more intuitively obvious con-
cepts.

The basic objects in space-time are taken to be light
signals between events and the world lines of spherically
symmetric nonrotating freely falling particles, on which
it is assumed there is some continuous idea of time, As
far as the causal and conformal structures are concerned,
there is nothing special about freely falling particles: Any
class of particles could be taken, provided there is
exactly one particle through each event in each direction.
One important advantage of this approach over that of
Ehlers, Pirani, and Schild is that no assumption is made,
ab initio, about the paths in space—time along which light
signals propagate: These paths are deduced from state-
ments about the emission and absorbtion of light. All the
considerations are entirely classical: For instance, it is
assumed that, by some process of extrapolation, it is
possible to define the world line of a freely falling par-
ticle through any event in space—-time.
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An outline of the argument is as follows:

Section 1: The causal structure of the event set is
introduced and the global restrictions imposed. The
topology is introduced.

Section 2: Light signals between nearby events are
discussed.

Section 3: The differentiable structure of space—time
is introduced.

Section 4: It is shown that the causal structure de-
fines a conformal structure and that light signals must
propagate along conformal null geodesics.

Throughout I rely heavily on the work of Kronheimer
and Penrose? and that of Ehlers, Pirani, and Schild.?!

1. DEFINITIONS AND CAUSAL STRUCTURE

Definition 1.1: A space-time is a pair (M, P) where
M is a point set whose elements are called and P is a
set of subsets of M, each with the structure of a ¢© one-
dimensional manifold, homeomorphic with R, The ele-
ments of P are called particles; it is assumed that there
is at least one particle through each event.

The ¢0 structure on a particle is interpreted as a con-
tinuous idea of time; the homeomorphism with R excludes
the possibility of closed particle world lines. Each par-
ticle has two possible orientations. A particular choice
of orientation of p € P defines an antireflexive linear
ordering on p, denoted by <ps if x€ pandy € p, then

% <,y is interpreted: x chronologically precedes y on
the world line of a freely falling particle.

Definition 1.2: (a) If a particular choice of orientation
has been made for each particle in P and if x and y are
any two events, then a #»ip from x to y is a sequence of
events ¥ = z(,2,,...,2, =y together with a sequence
of particles p,,p,,...,p, such that, for i =0,1,...,n — 1,

2 € b1y 2,1 € P and 2, 2.
(b) x chrvonologically precedes y (written x «<y)
if there is a trip from x toy.

A trip is the world line of a massive particle which
undergoes a finite number of collisions but which is
otherwise freely falling. In order that this definition of
chronological precedence should make sense physically
it is necessary to postulate:

Axiom la: (first causality axiom): It is possible to
choose the orientation of eachp € P so thatV m € M,
not m <m.

The interpretation of Axiom la is that on each particle
there is a natural arrow of time and that no particle can
enter its own past by undergoing a finite number of colli-
sions. It is an immediate consequence of Axiom la that,
with this choice of orientation, <« is an antireflexive par-
tial ordering on M. Following Kronheimer and Penrose,*
I make the following definitions:

Definitions 1.3: (a) if x ¢ M then I*(x) ={y € M|
x<y}and I-(x) ={y € Mly «<x}.

(b) x <y (*x causally precedes y”) if 1*(x) D I*{y)
and I-{x) C I(y).

{c) The Alexandrov topology, T on M is the topology
generated by {I*(y)ly € M} u {I-(y)ly € M}.
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(d) x Ty (horismos relation) if x <y but not x <y,

Axiom 2: ¥ xc M and p € P,then p N I*(x) and
p N I-(x) are open in p.

Roughly speaking, Axiom 2 says that if there is one

trip from x to an event on p then there is another faster
one: Though there is an upper bound to the (average)
speed of massive particles, this is not actually attained.
The topology T now not only induces the right topology
on every particle, but is also coincides with one idea

of space—time topology: Suppose a sequence of events
{x,} converges to an event x in the 7 topology. If p is
some particle through x with fixed parametrization (i.e.,
time scale) and (Z;,£,) is an arbitrarily small time in-
terval in p, containing x, then an infinite number of the
x, are to the future of ¢, and to the past of £,: The time
interval (on p) needed to travel from p to x, and back to
p goes to zero as n goes to infinity, Thus there is an ob-
vious physical interpretation of the convergence.

A further axiom is necessary to make M a causal space
and to ensure that 7 has reasonable properties: this is
a stronger version of Axiom la. It has been separated
from Axiom 1la for the sake of clarity. But first, another
definition:

Definition 1.4: If xe M andy € M, then x almost
causally precedes y (written x A y) if,V z € I-(x), I'(z)
D I+(y). Equivalently,V z € I+(y), [-(z) D I(x).

The point of this is that no real physical measurement is
ever made at a single event: An event should really be
thought of as the limit of its neighborhoods. If x almost
causally precedes y, then every neighborhood of x con-
tains events which chronologically precede events in any
neighborhood of v, and no real physical experiment would
reveal that x and y are not causally related. It is, there-
fore, reasonable to accept:

Axiom 1b: (second causality axiom): If x € M and
yeM,thenxAyandy Ax=x=y.

Lemma 1.1: T is Hausdorff,

If x and y are distinct events, then either not x A y or
noty A x, Suppose not x Ay. Then 3 z; € I-{(x) and

z, € I'(y) with not z; < z, and not z, < z,. Then I*(z )
and 1‘(z2) are disjoint open neighborhoods of x and y,
respectively.l

Lemma 1.2: < is future and past distinguishing, that
is,It(x) =I*(y) => x=y,and I(x) = I(y) > x = .

If I+(x) = I*{y),then x Ay andy A x,s0 x =y.B

Lemma 1.3: <« is full: Thatis,V xc M3 ye M
such thaty «< x,and,if y; «x andy, «<x,then3d z <«
withy, «<z andy, «z (and the statement obtained by
reversing < also holds).

Let x € M and choose p € P with x € p, p is homeomor-
phic with R, so certainly 3y € p withy «x. Hy, ««x
and y, < x,then I*(y,) N I*(y,) N p is open in p and
contains x. Hence 3 z € I*(y;) N I*(y,) N p such that
z<x.l

It is now clear that (M, <,<,7) is a full causal space,
according to the definition of Kronheimer and Penrose
(Ref. 4, p.485). The following conditions are fulfilled
v xy,ze M):

(I x < x,
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(I x<yandy<zx=x<zg,

(Im) x<yamdy<x=x=y,
(IV) not x <« x,

(V) x<«yandy <z => x«z,
(V) (a)x<yandy <z = x«<z2,

(b) x <<y andy < z = x <« 2,

(VII) x7Ty if x<y and not x <y,
2. LIGHT PROPAGATION BETWEEN NEARBY EVENTS

The crucial property of the light signals emitted at an
event x is that they can be seen on the boundary of the
future of x, I*(x). It would seen natural, therefore, to
introduce light propagation into this scheme by saying
that there is a light signal from x to y if y € I*(x), equi-
valently I+ (x) D I*(y) and not x <<y (emission definition).
However, it seems equally natural to say that there is a
light signal from x toy if x € I-(y) (absorbtion definition):
The light signals absorbed at y were emitted on the boun-
dary of the past of y. The symmetry between emission
and absorbtion could, possibly, be maintained by adopting
the following definition: There is a light signal from x
to y if either /+(x) D I*(y) or I{x) C I{(y) but not x <y,
But then suppose that x € M and y € M, with I*(x) D I+(y)
but not x <<y; choose a particle p with x € p. In general
I-(y) will intersect p in an open set of which x is not a
limit point. There will thus be a finite interval on p,
which is visible at y. Equally there may be single events
which can be seen by an observer on a particle over a
finite length of time. If either the emission or the ab-
sorption definition alone is adopted, then one is led by

a similar argument to a situation where a clock (that is
admissible parametrization) on one particle is seen to
vary discontinuously by an observer on another particle:
This situation is unacceptable, at least for nearby par-
ticles. The only way out of this dilemma, if the structure
of M is not to be too severely restricted, is to adopt the
following axiom:

Axiom 3: Every event has a future and past reflect-
ing neighborhood; that is,V x € M 3 N_, an open neigh-
borhood of x, such that if y € N, and z € N,, then

I*(y) D I*(2) = I(z) D I-(y)
and

I(y) 2 1 (2) = I*(2) D I*(y)

[from now on N, will always denote a future and past
reflecting neighborhood of x],

Now it is possible to introduce at least a local definition
of light signals: If y € N,, for some N_, then there is a
light signal from x to y if and only if ¥ T y. Nothing more
will be said, at least at this stage, about light signals
between events which do not belong to each others future
or past reflecting neighborhoods, or about the paths along
which light signals travel.

Let p be a particle; for each x € p take U, to be a future
and past reflecting neighborhood of x of the form I(m)
N I*(m,), where m; € p and m, € p, and let U, be the
union of all such neighborhoods U, for all events x € p.
U, is an open neighborhood of p.'If z € Up,then z € U,
for some x, € p. Define f*(z) = inf,. {x|x < 2} and
f(2) = sup,.,{x|x < ,2}; sup and inf refer to the linear
ordering <, on p. f*(z) and f-(z) certainly both exist
and belong to U, . Also I+(z) D I*(f*(z)) and I-(z) >
I(f-(2)), but not °z < f+(z) and not z > f(z). U, isa

0
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future and past reflecting neighborhood; hence z T f+(z)
and f~(z) T z. This proves:

Lemma 2.1: For any particle p there exist two func-
tions f*: U, — p and f~: U, — p such that z T f+(z) and
f@)1e, Vze U,. These properties uniquely define

f*and f-.

These functions are called message functions: They de-
scribe the process whereby an observer moving with p
sees and is seen at nearby events.

Lemma 2.2: ¥V pe P, f+: Up-ap and f-: U, — p are
open and continuous maps.

Take, as a basis for the topology of Up, open subsets of the
form{(y,,y,) = {2 € Mly, «z «y,}, wherey, € U,
ya€ U, and 3 py € Pwithy, € b, andy, € bye

Certainly if y; € (¥ 1,5, then f+(y;) lies strictly be-
tween f*(y;) and f*(y,) on p. Also,by the same argument
as that used in the proof of Lemma 2. 1, every event on
P, lying strictly between f*(y ) and f*(y,), is the image
under f+ of some point on p,, lying strictly betweeny,
and y,. Thus the image under f+ of {y;,¥,) is the open
interval in p bounded by f+(y,) and f*(y,). This proves
f* is an open map. Similarly f- is also open.

Let (%, x,) be an open interval in p. Then f+7'((x,, x,)) =
U, N (I-(xy) ~ I(x,)), which is an open set in U,. For if

z € U, N (I-(x;)~I"(x,)), then z € U, for some %, € p.

f*(z) certainly lies in the closed interval [x4, x,] in p.
Suppose f*(z) = x,;then I7(x;) D I(z) and every neigh-

borhood of z intersects I'(x,), contradicting not z € I'(x,).
Suppose f*(z) = x,;then not z € I'(x,), which is also a
contradiction. Hence f*(U, N (I'(x5) ~ I'(x4))) C (xq,%,).
Conversely,if z € U, and f*(2) € (x,,x,),then z < f*(2)
and f*(z) € x,,80 z € I'(x,). If z €F(x;),then I'(x,)

D I-(z) and so not f+(z) > x,: a contradiction, Thus

z € U, and f*z) € (xy,x,) implies that z € (-(x,) ~

I<(x;)) N U,. This proves that F U (xqx,)) = U, N(I-(xy) ~

I(x,)) and that f* is continuous (similarly f- is also
continuous).®

It is easy to show that the T topology is the smallest
topology which makes all the functions f+ and f- con-
tinuous: That it is the smallest topology which makes
space—time “look” continuous for every observer in
free fall. This is a further confirmation of the fact that
the Alexandrov topology is the right topology for space—
time: That is, it is the topology which embodies the most
physically reasonable idea of continuity.

3. DIFFERENTIABLE STRUCTURE

So far nothing has been said about the dimension of
space—time. There are a number of ways in which the
dimension of a causal space can be fixed, using varia-
tions of the statements: In general, » light cones meet in
a single point (cf. Woronowicz8). The simplest, for the
present purpose, is embodied in axiom 4a (remember
that the message functions are open maps).

Axiom 4a: (first dimension axiom): Given p, € p such
that the four message functions defined by p, and p,,
together with homeomorphisms p; — R and p, — R, define
a one-to-one map from a neighborhood of every point in
v, nu, ) ~ (p, U p,) onto an open set in R?. Further

1
every eveznt belongs to (Up1 N Ul’z) ~(py U pz) for some
such pair of particles p; and p,.
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Not every pair of particles can be expected to define
such a map: In Minkowski space, for example, two co-
planar timelike straight lines do not define a one-to-one
map into R4, but a pair of skew timelike lines do. (I am
grateful to Professor Penrose for pointing this out),
Combining Axiom 4 with Lemma 1.1 and Lemma 2. 2,
we have the following:

Theorem 1: M is a ¢9 four-dimensional real mani-
fold,

The local coordinates are defined by the four message
functions of two nearby particles. These are the “radar
coordinates” 1:Each event is parametrized by the time
at which a signal is sent from one of the particles to the
event and the time at which the echo from the event is
received back at the particle.

Consider aparticlep,, and suppose that a second particle,
b, intersects U,. Then the two functions f*]pzz py— b1
1

and f- |p2: po — P4 are continuous, and, in fact, strictly

monotonic; they describe the relationship between a clock
on py, say, and a clock on p,, as seen at p,. Now each
particle is homeomorphic with R, that is, on each par-
ticle there is a continuous idea of time: All clocks used
to measure time are continuously related. Each homeo-
morphism to R induces a differentiable structure on the
particle; each clock defines a preferred class of clocks
which are differentiably related. Suppose that it is
possible to choose a differentiable structure on each
particle, by, for instance, using the same type of clock

on each particle, in such a way that the message functions
between every pair of nearby particles are differentiable,
all of class C¥ say, This situation is one possible inter-
pretation of the statement that “space—time looks as if it
has the Nth degree of smoothness.” The aim of this
section is to show that, under certain additional axioms,
space—time is a differentiable manifold which is as
smooth as it looks.

Intuitively, at any event each particle defines a (time-
like) direction in space—time. It is possible to introduce
a notion of continuously varying direction by the follow-
ing definition:

Definition 3.1: A set € ={p,,t, |x € A} of particles
with given parametrization, ¢,: p, = R,is a ¢%-congruence
on U M if:

(I) Vv x € U there is exactly on (p,,t,) € € such
that x € p, and ¢,(x) = 0.

(II) For each 7 in some neighborhood of 0 in R,the
map U — M:x— ¢;1{r) is a ¢c®—morphism.

Physically, a c¢0-congruence is a fluid. Now suppose a
preferred differentiable structure has been chosen on
each particle. Let € be a c-congruence, each of whose
elements has a differentiable parametrization; it is
reasonable to suppose that, in addition to being contin-
uous in the above sense, C also “looks” continuous.

Any observer on a nearby particle p, with parametriza-
tion £:p — R, can assign two parameters to each element
p, of € which describe the relative velocity of p, (at X €
px) with respect to p; physically these are the red shift
of p, and the doppler shift of signals bounced off p.. The
information is contained in the derivatives V; and V, of
the two functions: to f1 o t;1 and t o f} o ;! at 0, where
fiip,— pand fi: p, > p are the message functions de-
fined by p,. If € is to appear continuous to the observer
on p,then these two parameters must vary continuously
over U,. Hence:
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Axiom 5: f p € P and € is a ¢®-congruence on V C
Up, then the two functions

VitV R:xe{tof;ot;l}'lo,
V2:V—9R:x—>{tcfx‘lot;1}'|o

are continuous.

(It may be necessary to take U, to be smaller than the
neighborhood considered previously so as to avoid the
possibility of U, containing caustics in the null cones of
points on p.)

A second definition of dimension can be given: This is,
roughly, that there should be four independent directions
at each point. A set{e;-- -en} of ¢®-congruences on a
neighborhood U of x is independent at x if the set of
events which can be reached from x by going first along
an element of e, then along one of ¢,, etc., is a ¢0-
submanifold of U of dimension n, A set of directions at
x, that is, particles through x, is independent if each
particle can be extended to a c°-congruence on a neigh-
borhood of x, and these ¢?-congruences are independent.
The set of directions at each point must be four dimen-
sional, that is:

Axiom 4b: (second dimension axiom): There are four
independent directions at every event,

Axiom 4b also implies the existence of ¢%-congruences:
The fact that a particle through an event can be extended
to a ¢0-congruence on a neighborhood of that event can
be thought of as stating that there are no gravitational
singularities at the event, as the gravitational field can
be measured, in some unspecified way, by the divergence
of a congruence of particles through x.

It now follows that:

Theorem 2: M is a Cl-manifold, if all the message
functions between particles are of class C1.

Define the set C1,, of differentiable functions on M by
fiM—isincCly, if:

(i) f|p :p — R is of class C1 for every particle p.

(ii) The derivatives of f along the particles of any
c% congruence on U (with respect to the parameters
on the particles of the congruence) define a ¢ func-
tion on U.

As local coordinates, use radar coordinates together with
differentiable parametrizations. Then it follows from

Axiom 5 that the local coordinates belong to C1,, (locally).

In local coordinates, a coordinate patch U is mapped onto
an open subset I of R4,and a ¢O~congruence on U is
mapped onto a family of C! curves in U, with continuous-
ly varying tangent vectors. Using Axiom 4b, together
with arguments from elementary calculus, it can be
shown that any function f e ClM is represented on I by

a function of class C! (mapping U to R). Further any
function of class C1 on [ trivially induces a function on
U which belongs to C1,, (locally). Lastly, as the definition
of C1,, is entirely local, any function which agrees with
an element of C1, on a neighborhood of each point of M
must also belong to C1,.®

The C¥ structure on M can now be defined inductively:
Cl-congruences are defined on M and modified versions
of Axioms 5 and 4b are introduced, and hence the C?2
structure is introduced. The process can be repeated
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successively to show that M is as smooth as the mes-
sage functions between particles: that M is as smooth
as it looks.

4, CONFORMAL STRUCTURE AND LIGHT
PROPAGATION

The causal structure on M can be used to define a con-
formal metric (M is now taken to be as smooth as is
necessary). Consider a point x € M and a particle p
through x. Choose a particular differentiable parametriza-
tion t: p — R on p, such that t(x) = 0. Now define the
function g: U, > R by g(z) = t(f*(2)) x t(f-(z)). Thus
glz)=0if and only if z € U, and z T x or £ 72,80 {zae
U,lg(z) = 0} = I+(x) N I(x) N U,. But I(x) N U, and I"(x)

N U, are three—dimensional su{)manifolds of M, every-
where except at x (because they are everywhere surfaces
on which the radar coordinates defined by p are constant).
g(z) = 0 cannot define a hypersurface at x itself, or there
would be points inevery neighborhood of x which belong

to both I+(x) and I(x) (in addition to x itself). This would
contradict Axiom 3. Hence, in local coordinates at x,

£ /%) = 0 and g ,(x) defines a tensor. Differentiating g
twice along p gives g, V*V? = 2, where V@ is the tangent
vector to p at x. Hence g, # 0. Further, it can easily

be seen that, up to a scalar factor, g, is independent of
both p and .

Any particle (with given parametrization) through x is a
curve whose tangent vector V¢ at x must satisfyogabV“V"
> 0. Any curve through x which lies in [*(x) or I-(x) must
have a tangent vector n? which satisfies gannt=0. Any
point in a curve through x in I'*(x) is the limit of a se-
quence of events which can be reached from x by trips,
that is, in physical terms, by massive particles under-
going a finite number of collisions, Thus a vector at x
which satisfies g n%% = 0 is either a limiting (average)
velocity for trips through x or minus such a limiting
velocity, Now it seems to be true that in the real world
the limiting speed at which massive particles can travel
is finite. So it is reasonable to suppose that no vector
n4 can be a limiting average velocity for both future

and past directed trips. Hence:

Axiom 6: g, is everywhere nonsingular.

&, is the conformal metric on M: It is defined at all
nonsingular points, up to a scalar factor. It is easy to
see that the only possible signature for g,, is (+ ———).
(The above contruction is given in Ref.1.)

It will now be shown that, with an obvious definition of
light paths, light must propagate along smooth curves
which are conformal null geodesics.

Definition: (a) (nonlocal definition of light signals):
If x¢ M and y € M, then there is a light signal from x
to y if there is a sequence of events z, = x,24,2,4,...,
z, =y such that,fori=1,...,n— 1,

(1) z,,¢ N, andz, , € N, ,for some N,
() z,,7z,andz; T2, ;andz, Tz, .

(b) A light path L is a connected set of events such that
V z € L there is a neighborhood U, of z such that U, N
L is linearly ordered by T and is not contained in any
larger subset of U, linearly ordered 7.

Thus there is a light signal from x to y if there is a
sequence of points between x and y, with light signals be-
tween them according to the local definition and if this
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sequence does not bend (that is, there is a light signal—
according to the local definition—between one point of

the sequence and the next point along but one). A light
path from x to y is, roughly speaking, the set of all events
between x and y through which the light signal can travel.
Both these definitions make good sense physically.

[Note: This is slightly more restrictive than Kronhei-
mer and Penrose's® treatment of light signals in terms
of girders and beams. The reason for this is that, in
general, M is not globally future and past reflecting and
so its causal structure does not coincide with its natural
causal structure (in the sense of Kronheimer and Pen-
rose’ as a conformal manifold: The chronology relation
is the same but the horismos relation is not. Consider,
for example, the pseudo—Riemannian manifold obtained
by removing the set {(xo, ¥;)1x; =0, 0 < x, < 1} from
Minkowski space. Taking the particles as timelike
straight lines the procedures given above lead to the
correct conformal structure on M. However, if z, is the
pomt (—1,—1) and z, is the point (1, 2), then the points
z, and z, satisfy z, T z,, even though there is certainly
no light signal from z, to z, (and z; does not belong to
a future reflecting neighborhood of zz) The rather
cumbersome definition given above avoids saying that
there is a light signal from 2z, to z, whenever z; T z,.
With this causal structure (but not with the natural
causal structure) there would be a light signal from z,
to z, according to Kronheimer and Penrose's definition.

Lemma 4.1: Ity € M, x € N, for some N, and x T y
and if U is any nelghborhood of y, then there ex1sts zZZy
in U such that x Tz and z Ty. Similarly, if W is any
neighborhood of x, then there exists z # x in W such that
xTzand 2z Ty.

M is locally Euclidean and therefore locally compact.
Choose V, C U N N, withy € V, and V, ={z € MIm, «

z <<m,} Such that V. is compact. PicK a particle p through
3y and a point n of p withn <y and n € V (Without loss
of generality m; € p and m, € p).

Put=I(x) N I*(n) N V.. Iis a closed subset of V and
hence is compact. I is ajiso nonempty, because x << m and
a trip from x to m , must contain one point of I.

Let {z,} be a sequence on p such that z, >y and 2z, — y
asn— o, For eachn, IN Iz, Iz)n Vy is compact and
nonempty (because x <« 2z, and a trip from x to z, must
contain a point of 7 N I(z,) N V,).

I(z, )N V n I} is thus a nested sequence of nonempty
compact sets Hence there is at least one point z € N
I(z, Iz )NV y N 1.

Certainly z € U and z > x,since z € Z. Let f* be a
message function from U, O V, to p. Suppose f+ (z) >v;
then f*(z) »z, for some %y and so not z € I(z,),a con-
tradiction. Hence not f*(z) >y and so z < y. Furtner
z € Z implies z # y. But x< z <y and x Ty implies
xTzandz Ty.

The proof of the second part is similar.®

Lemma 4.2: If x€ M,y € N,,for some N,and x Ty

then I*(x) N ;-(y) N V is a smooth path with end point y
for some neighborhood V of y. Furthermore, light paths
are one-dimensional submanifolds of M.

1) I+(x) n () = {ze Mlx1zand 2z 1y}
2)IszI+(x)ﬂl(y)andez tzorz?t

Z7y,thenZ e F*(x) N I(y).

Remarks:
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Proof of Lemma 4.2: Choose a particle p through y
with parametrization ¢ : p — R such that #(y) = 0, Define
the function g: I+(x) » R by g(z) = t(f+@)t(f(2)), z
I*(x),where f+ and f- are the message functions U to p.

Then I-(y) N F+(x) = {z e I*(%)|§z) =0 and z < y}.
I+(x) and I'(y) can never cross, so 1-(y) N I'(x) c {z e

I*(x)|g . (z) = 0}, where {x°} are local coordinates on
I {x) aty.

Now g.,4(¥) (a2 3 x 3 matrix) must have rank at least 2,
since g,, (v} is nonsingular. Sog; = 0 and g , = 0, say,

define a one-dimensional submanifold L of f" (x)ina
neighborhood U of y; L contains i*(x) n I W) NnU. By
making U small enough, L can be taken to be homeo-
morphic with an open interval. By Lemma 4.2 there is
apointz=z=yof LN Usuchthatx TzTy.

Suppose there is an open interval Z in L between z and y
withw € Z = notw Ty. Let m be an end point of this
interval. By Lemma 4. 1 there are two sequences {u,}
and {v } in L which both converge to m and which satlsfy,
vV n, xTu Tm,mTv,Ty,m=u, andm = v,. It is

not possible that, but for a finite number of elements,
both sequences lie on the same side of m in L or L
would have a null tangent at 7» which would be both
future and past directed. Thus it is not possible that m

is an end point of Z, so Z cannot exist. Henge, if Lis

the part of L between z and y, then (%) n I- (y) NTIis,
dense in [. But 7*(x) N I-(y) is closed so L C I*(x) n I-(y)
and the first part is proved.

A slightly extended version of this argument shows that
if L is a light path and z € L, with xTz,say,and x €

N, N L, then in some neighborhood W of z, L is exactly
W N I°+(x) N (I*{z) U I(z)) and that this set is a one-
dimensional submanifold of W. This proves the second
part.®

The first part means that nearby events are “seen” in
a definite direction.

Lemma 4.3: ¥ xe€ M (N, ﬂf(x))'vxand(N N
I-(x)) ~ x are null hypersurfaces in N, (with respect to
the conformal structure for suff1c1ent1y small N, ).

As above, it can be shown that if z € (N, n I+(x)) ~ x,
then I-(z) N I*+(x) is,a smooth curve in some nelghbor-
hood of z: soN, N I+ x) must be null at z (provided that
N, is small enough for F*(x) to be differentiable every-
where in N, ~ x).

Lemma 4.4: A light path is null curve.

If L is a light path and z € L, then by Lemma 4.1 there
is asequencefkJ }C L w1thz Tx,and x, >z asn— .

Hence L mtersects Z+(z) at pomts arb1trar11y close to
z and so must be tangent to Z*(z) at z: Thus L must be
a null curve.

And so, finally:

Theorem 3: Light rays are conformal null geodesics.

[If 2 new horismos relation is defined on M by x Ty if
and only if there is a light signal from x to y but not

x <<y, then the causal structure of M will coincide with
its natural causal structure as a conformal manifold.
Further light rays will be beams and the causal space
will be regular.]

Conclusion: From this point the treatment of Ehlers,
Pirani, and Schild! can be used to build up successively
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the projective, Weyl and metric structures of space—
time. (They take as their fundamental concepts the
worldlines of freely falling particles and light rays, as
opposed to light signals: One of their earlier axioms,
which is redundant in the light of Theorem 3, is that
light rays are smooth paths in space—time). An axiom
equivalent to the law of inertia defines the projective
structure of space—time and an axiom concerning the
relationship between nearby gravitational clocks leads
to the metric structure.

One possible interpretation of the results of this paper
is that the kinematical behavior of particles and light
signals determines the conformal structure of space-
time, and hence the free gravitational field. The Rie-
mannian structure of space-time depends on the more
detailed structure of the matter in space—time, as ex-
pressed by its energy—momentum tensor.

Of course, throughout this approach the axioms become
more and more intricate as the geometric structures
they relate to become more and more complex: But what

is really happening is that primitive geometric structures
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are being related to simple physical concepts and more
specialized geometric structures are related to more

sophisticated concepts. The process should not be thought

of as adding unnecessary complications to a previously
simple theory; it is rather one of bringing to light, that
is, interpreting physically, complications that are in-
herent in the appearent simplicity of the chronometric
and geodesic hypotheses.
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The problem of a system of charged particles moving in a random force field and its application to
the study of turbulent plasmas are discussed. We point out the inapplicability of existing formalisms to
many cases of astrophysical interest. A generalization of this formalism is developed from two
different points of view—a Fokker—Planck approach and a quasilinear approach. Both approaches
lead to the same equation for the evolution of the particle distribution; this equation has the form of
a Fokker—Planck equation, but the terms describing the effects of the random field do not retain the
interpretation which they have in usual Fokker—Planck development. It is shown that this equation
reduces to a quasilinear diffusion equation when the random field is electromagnetic.

I. INTRODUCTION

The study of the evolution of a distribution of charged
particles moving in a random, or “turbulent,” force
field is very relevant to many problems of current
interest in plasma physics and astrophysics. A pro-
posal by Fermi that cosmic rays could be accelerated
in a stochastic manner by moving magnetic “walls” dis-
tributed throughout the galaxy marked the historical
origin of interest in this general area.l.2 Since then
various authors have proposed that the turbulent mag-
netic field of the solar wind is more important than
scattering by collisions between individual particles;
Jokipii3 has calculated the effects of a turbulent mag-
netic field on the propagation of energetic particles
through the solar wind, and Newman and Sturrock4 have
shown that turbulence is more important than collisions
in determining the electrical conductivity of the solar
wind. In addition, Manley and Olbert5 have proposed
that the observed electron energy spectra of x-ray stars
arise due to the combined effects of stochastic acceler-
ation and synchrotron radiation. Acceleration by
stochastic fields has also been put forward as a mecha-
nism for the production of high-energy particles pro-
duced in laboratory plasmas subject to the beam-plasma
instability.6

In order to analyze problems of this general nature, two
alternative methods have been employed. The first is
the description of the evolution of the particle distribu-
tion in terms of a Fokker—Planck equation as discussed
by Sturrock?.8-and others3:9; the second method em-
ploys the quasilinear diffusion equation, as developed by
Hall and Sturrockl© and Kennel and Engelmanni! from
a classical point of view and by Melrosel2 and various
Russian authors13.14 by a semi-quantum-mechanical
approach.}5 As we show later in this article, these two
approaches are no longer valid if the problem at hand
entails the consideration of nonfluctuating macroscopic
fields and/or spatial gradients in addition to the small-
scale random fields. Our aim in this article is then two-
fold: First, we wish to derive the correct equations
governing the evolution of the particle distribution func-
tion from both approaches without making this restric-
tion; second, we must then compare the results of the
two approaches and, if any differences arise, explain
which method has more validity and why. As we will
see, this latter task is easily dispatched since the final
equations in both cases are identical. This in itself is
an important result as it enhances our confidence in the
validity of this equation.

In Sec.II we present a brief summary of Sturrock’s
derivation of the “traditional” Fokker—Planck equation?®

502 J. Math. Phys., Vol. 14, No. 4, April 1973

and show the difficulties which arise when one tries to
apply the result to the general case described above.
Section III gives a satisfactory method for generalizing
the Fokker-Planck equation; the resultant expression is
of the Fokker-Planck form, but the terms describing the
effects of the stochastic forces have a slightly different
interpretation., In Sec.IV we give a new derivation of the
quasilinear equation which is compared with our gene-
ralization of the Fokker-"Planck equation; it is shown
that the two approaches lead to identical equations for
the particle distribution function. In Sec.V, we restrict
ourselves to electromagnetic fluctuations and show that
in this case either approach leads to a diffusion-type
equation in phase space of the form given by the quasi-
linear development of Hall and Sturrock,10 but with
slightly changed expressions for the diffusion coeffi-
cients.

Il. THE TRADITIONAL FOKKER-PLANCK EQUATION

The Fokker-Planck equation has been derived in vari-
ous ways by many authors.8 9 In this section we give
that of Sturrock® because it lends itself readily to the
generalization given in Sec. IIl, However, before begin-
ning, a few preliminary comments on notation and
assumptions are necessary.

In the remainder of this article we concern ourselves
with the behavior of a system of identical particles, We
assume that this system is adequately described by a
distribution function F(Z,, t),where Z, (u=1,2,-+,6)
denotes the six phase-space coordinates x,y, z,p,, py, b,
(Cartesian coordinates and their respective momen-
tum components) and ¢ is the time. F is so defined that
FZ(ZP, t)d5Z is the number of particles in the phase-
space volume d6Z about Z,, at time ?.

We suppose further that a particle at Z“ at time ¢ obeys
the equation of motion

az, 2

—E:Q“(Zc,t), (1)
where Gf is a function of Z and { only, as indicated.
From (13 we see that knowledge of G, for all Z and ¢
and of the position in phase space of a particle at some
given time completely determines the position of that
particle as a function of time.

Using the notation originally employed by Hall and Stur-
rock,10 we separate the right-hand side of (1) into two
parts as follows:

az u
FZGMZ(ZO’t)_’_gE(ZO,t)y (2)
Copyright © 1973 by the American Institute of Physics 502
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where GZ denotes terms due to known external, non-
fluctuating fields, and &, those due to the small-scale
stochastic fields. Throughout this development we will
be assuming that the ng are small enough, in some sense,
to render possible a perturbation, or weak-turbulence,
expansion in orders of g.

The distribution function F Z will then satisfy the phase-
space continuity equation:

oFZ 0

— +— [(GZ +gf)F?] =0, 3
ot 3z, l g = ®)
where the summation convection for repeated indices
is used. The external forces with which we will be con-
cerned will always be electromagnetic so that G‘ will
satisfy

a—Gf =0; 4)
22,

hence (3) takes the form

o224 2 (gzro=o. (5)

9t 9z, 9z,
We do not assume that we know the behavior of the quan-
tities gf in detail. What we do assume is that there are
many possible realizations of gf consistent with the

“macroscopic” behavior of the system (i.e., behavior

smoothed out over time and length scales much larger
than those of the fluctuating g“Z); we then seek an equa-
tion governing the evolution of the system in terms of
quantities of the form (gZ(Z, t), (gZ(Z,,t) gZ(Z/, '),
etc., where “()” denotes ‘an average over an ensemble
of poss1b1e realizations of gZ. We further assume that
we may assign a coherence length L, and a coherence
time 7, to the fluctuating field, such that the quantity

N
(£ 250,0))

becomes negligibly small whenever any two of the times
denoted by #,, say ¢ and £(i,j < N), satisfy |4, — | > 7,
or whenever the spatlal separanon of any two of the
phase-space positions denoted by Z¢ significantly
exceeds L,. L, and 7, then provide measures for the
length and time scales of the fluctuating field, or, alter-
natively, they may be thought of as the length and time
over which a particle is scattered once by the fluctua-
tions.

Now, in our notation the technique employed by Sturrock
proceeds as follows: Consider the particles in a volume
of phase space d6Z about the point Z at time £. At time
t’,these particles will occupy a volume d8Z' about a
new point Z; ; but Eq. (5) just expresses the conservation
of partlcles in phase space, thus we must have
FZ(Zp,t)dﬁz =FZ(Z"J,t’)dGZ’, (6)
where Z; is found by solving (1) [or (2)], with Z, and ¢
replaced by Z; and {’, subject to the initial condition that
Z,=Z, when {’ = {, Sturrock then showed that, if we let

" =1t + At,

Z, =2, + 102, (z, ™

»E, A1)

FZ(Z t + At) can be found in terms of FZ(Z
followmg formula:

, ) via the

anr
82, 32,

L9}

FZZ,,t + at) = F2(z, t) + 5) &
# # n=1 n!

X [az, -+ 8z, FXz,,0]. (8)

o
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The expansion given in (8) is valid for sufficiently small
At if FZ is well-behaved since AZ —0as AL~ 0.
Thus, we may write (8) as

AFZ 3 <AZa )
=— Fz
At 3Z, \ at

1 82 AZ AZ,
+ — o FZ — ey (9)
20232, At
where
AFZ :FZ(Z“,t + At) —FZ(Z“,t). (10)

We are actually looking for an equation for (FZ), where
the averaging process denoted by “( )” has been defined
above. We also wish to know the behavior of (FZ)
smoothed out over many collisions., To this end we
must make two assumptions. First, we assume that
there is a time interval At short enough that (FZ) and
G f do not change very much but long enough that

At 2> 7,. In such a case,

<AZP> —Gz+ AZ ’

At # at /,

AZ, AZ , AZ AZ

22820 _gzgzat+ .___ﬁ___>
at # at /,

AZ, 82,
+G,at +GUAt< ,
At at/,

<

(11)

and all such cumulants of higher order in AZ, are at
least of order Af,i.e., go to zero as At goesto zero.
The quantities (AZ /at), and (8Z,8Z,/51), are due
to the terms contammg gZ in the equatlons of motion
(2); both will in general y1e1d a contribution to zero
order in Af. Our second assumption is that the process
under consideration is a Markov process, i.e., that the
distribution function (FZ) does not “remember” any of
its past history beyond a few coherence times. This is
tantamount to assuming that (gg(Zc, DFZ(Z ,t + At)) =
(8&(Z ,, ) (FZZ ,t + at)) = 0 for At> 1_,i.e.,that
FZ(z ,t + at) and gi(Z ,,t) are uncorrelated. In order
to determine how the distribution function evolves from
any time ¢ to ¢ + Af, we may then take F2(Z ,t) =
(FZ(Z ,t)) for all members of the ensemble since
FZ(Zo,t + At) is uncorrelated with any particular real-
ization of the g . Under these assumptions, if we then
average (9) over ensembles and keep terms only to
lowest order in Af, the Fokker-Planck equation results:

3(F2) 3(F2) 2
+G, =——
at 8z, 22,
80z 1 92 82,02
x<<—“> <FZ> Ty y u> <FZ> ’
at /, 2 02,02, \\ ot /,

(12)

where we have denoted
AZ 0z
(52 - () o
At /., at /,
AZ, A7 0Z 0Z
< K ">=< L ”> + 0(at).
At A at /.

In retaining only lowest order terms in A¢, we may then
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write
0z AZ
<—“> - ”Alim " < IJ> ’
at /. t-0 At /,
0Z,0Z AZ ANZ
< £t = lim _P__L'> (13)
ot DNt—0 At A

Equation (12) governs the evolution of (FZ) from time
ttot + At where Af > 7,. However, no restriction was
made on the particular time ¢ chosen; thus (12) is valid
at all times.

Up to this point we have not done anything new. However,
before continuing, let us look at our assumptions a little
more closely and see what conditions must be met in
order for these assumptions to be valid. First of all,we
have assumed that some Af 2> 7, is a good expansion
parameter in the sense that higher order terms in AZ

in Eq. (12) may be dropped; since A Z, depends on both
G7 and g£ through Eq. (2), this requlres

—tarr<LGat<L,, (14)

where L, is a typical “length” scale for variation of
(FZ) with the coordinate Z,. This is then a restriction
on the size of Gf in terms of parameters involving the
fluctuations, since the “collision” or coherence time 7,
gives a lower bound for A{ and, thus, L /At gives an
upper bound for GZ In the case where g“ just describes
binary collisions between particles in laboratory plas-
mas, this restriction on G“Z is not too severe, since
collision times in such cases are sufficiently short and
collisions sufficiently frequent that (14) may be satisfied
for most external field configurations of interest. How-
ever, in turbulent plasmas, the scattering process is
typically much slower and the restriction on G f de-
manded by (14) eliminates all but very weak external
fields from our consideration.

Another problem is the calculation of (87 /9t and
(82,37 ,/3t) given in (13). How does the presence of
GZ effect the calculation of these terms? Again, in the
bmary collision case, this question is easily resolved;
collisions are typically of sufficiently short range that
the interparticle forces completely dominate the exter-
nal forces during the short time the collision occurs,
and the dynamics of a single collision can be analyzed
as if the external forces were not present, In a weakly
turbulent plasma, however, we typically have gZ < GZ
at all points in phase space and time, so that it is clear
that the presence of an external field will have a pro-
found effect on the collision process.

In light of this discussion it becomes obvious that for
application to the general problem involving a turbulent
plasma, (12) is unsatisfactory as it stands. An outstand-
ing example of this difficulty is a homogeneous plasma
in a steady magnetic field taken along the z-axis but
also subject to a weak fluctuating electromagnetic field.
If the electron gyrofrequency, 2, associated with the
steady magnetic field is such that Q,7, > 1, the first
inequality of (14) is not satisfied for Z = p,, since

|at2 dGz/at| ~ | at2 d2p, /at2| ~ I—QZp At2| >

Q42 At\ = GZat for most of a particle's orbit. It is
also clear that the external magnetic field will have to
be considered in the calculation of the collision terms
(az /3t), and (32,37 ,/31),. This particular case has
been cons1dered by Manhelmer,l6 who succeeded in
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finding a suitable Fokker—Planck-type equation for this
problem by parametrizing the distribution function in
terms of unperturbed particle orbits. The method used
by Manheimer is just a special case of the approach we
develop in the next section.

1. EXTENDING THE FOKKER-PLANCK EQUATION
TO MORE GENERAL CASES

Our aim is to modify Eq.(12) so that any external field
configuration is allowed. To do this let us look at a
generalized set of coordinates X, related to Z, bya
transformation of the form

Xp = Xp(Zo)t)a (15)

i.e.,a transformation which, in general, has explicit time
dependence.

Assuming we know the equation of motion (2) in the Z-
system, we may find the equation of motion in the y -
system by transforming (2) according to (15). We find
that Xu obeys the equation of motion

d d dz, 3 3 3 2
_ﬁz_&+_i_"_~=_xﬂ+coz_x_u+gcz Xp . (16)
. dt  dt 0z, ot oz z

g g

if the transformation (15) does not depend on the stocha-
stic fields, we may separate (16) into two parts in analogy
with (2) to find

dx ,
—d_t_ = G“(xo,t) + gp(XG’t)’ ()
where
ax ax ax
G, =284+ z-2E gapd =gz-2# 18)
T} ° ez, Eu= & 9z, (

describe the respective effects of the external and stoch-
astic forces, as before. Defining the quantities

F(x,,t) = F*Z,,?),
NZy, ", 2Z,)
n="% = (19)
3(x1," "5 Xe)
we may transform (6) to read
h(x s OF (X, 8)d8x = h'(x [, )F(x},t")d8y ", (20)

where, because of the explicit time dependence of the
transformation (15), we have allowed k to depend expli-
citly on time as well. X, is point in the x -system at
time ¢’ of a particle whose orbit passes through x, at
time ¢ and which obeys the equation of motion (1’;‘)

To find an equation for F(x“,t) from (20), we may use
the same procedure employed in Sec.II for F2 starting
with (6). All that is necessary is to replace Z, by x,
and F# by hF;the rest of the argument is 1dentlcal
Hence our equation for AF corresponding to (9) is

A(WF 9 /A

( )=_— AXu

Af ax‘1 At
1 a2 Ay, A
+o Xu X”hF)—-‘-. (21)
2 9x,9x, \ A

In the Appendix we show that we can always find a
choice of coordinates x, = Y, related to Z, by a trans-
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formation of the form (15) which has the property

G, = 0. Making this choice for x , in (21), we see from
(17) and (18) that AY, depends oni‘y on £,,where g,
gZ(y, /3Z ). All exp11c1t dependence oh the external
field conflcruratlon has been removed. Letting F(¥, s t)
and & be defined by (19) (with X Teplaced by ¥, ) and
noting that (a/at)h(Yo ,1) = 0,we ! ind that in this special
coordinate system the dlstrlbutmn function evolves
according to

AF 1 3 [/, AY, -
hay,\ At

1 02 . AY  AYp -
+— h F)—--.,
2n 3Y 07, Af (22)

Now, for the coordinate system Y, we find from (17) that
AY, is found by integrating the equation of motion

d
— [aY, (¥, ; A1)

— =8,[Y, + 8Y (Y, ,¢; Ab),t + at].

(23)

I we take (£,(Y,,?)) = 0 we can evaluate (AY ;) by
expanding (23) about the point Y, and integrating:

ar gy = [Mar (g, x,,t + )

i ¥ _a_ ’
AV (T, 150) S 20 (Yt + 1) + 0(g9)

at at 8
= Jo ar [ a(e(,, 1 + 1)

aa—g (¥, + t')+ 0(g3). (24)

Similarly,
at At
(oY 8 g) = [ a7t

x(gra(Y“,t +8)8(Y,,t + ) + 0(g3). (25

As in Sec.H, we seek an equation for {¥). However, in-
stead of using Af as an expansion parameter, we assume
8, is small enough to justify a perturbation expansion in
orders of 3. Averaging (22) over ensembles and again
assuming a Markov process to allow us to take (F( 1),

= F(Y t), we find

&F) 18 <A <AYa> .

e L (F)>
At hov, \ \at

1

Lo <h<AY AYp >(F)>+ 0(g3). (26)
2% oY Y,

But from (24) and (25), we note that (26) may be written
as

fAt HF(E+1t)) 1
at < dt’ }T—Y_
1 92
~ ST,

[T (¢ + t')E@)]

[RA 4t + t')(f‘(t)>]> =0(g3, (21

where we have suppressed the dependence of F on Y,
and

L (t+¢)

t’
= J dt”<§rﬂ(Yu,t + e -2 a ga(Yu,t+ t’)>+ 0(g3)

(28)
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and
At +¢)

124 A ,
=2[ A2,V b+ BT, + ) + O(g3). (29)

I', and A, are found from (24) and (25) and the equality
of symmetric parts (29) and (25) [the antisymmetric
part does not contribute to ( 26)] But (286), (25), and (24)
also give (F(t + t')) — (F(t ) = O(g?) for ¢’ = At. Thus,
we may replace (F(#)) by {F(¢ + ¢’)) in (27) and make an

error of only order g3. Thus, (27) becomes
At 8(F) 1 o .. .
~f + = —[hL (7]
h ey,
Lt 0(g%). (30)
2fz8YaaYB[ e 7] T

But (30) must be valid for a range of At > 1
integrand must satisfy

o»thus the

HF) S
— =— = R, F
ot |t h oY, [ t+ eXE(E T )]
92 .
- : 3 1
+ % a7 v, [RA g {F(t + t'D] + O(g3) (31)

for all timest¢ +¢’. Now if we replace! +¢'byt and A, by
Aaﬁ = 2A + ZAB in (31), we find that I’ . and A may
be found from (AY o/Bt) and (AY AY /ALy [(24At and (25)]

merely by eliminating the operation (1/At#) fo dt’. Thus
- aAY Y
I = lim ‘“> :< °>
wAt—0m\ Al at

A . AY AY Y dY
b= yim (Feey_ (TaTle)
AL~ At at

We have, therefore, shown that we may write the equa-~
tion for (F) in the coordinate system ¥, as

ML () )
at h aYp ot

1 92
+ —
2h ey, oy,

A J0Y 3Y \ .
(h< £ ”><F>>; (32)
ot
the above equation for (F) is the Fokker-Planck equation

as it generally appears in the literature for a coordinate
system in which G“ =0.

In a system where G“ # 0 the equation for (F) is given
by transforming (32) to the general system described by

Xy

a(F) o{F) 1 9
— +6, — = —— (hl"#(F))
at ax” Xu
1 @ (ha, (F)), (33)
2h axuaxu By ’
where
Auu = %Au s T %Aup’ (34)
~ 0 1. 02
I"“ = ]_“a__X“_ + = ITXu
Y, 2 *avy. av,
t 0
= f_wdt’<gh(x;,t’)—5——' g“(xo,t> (35)
XA
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and
“ axu axy t , ax,
Moy = Rop 38 0 =2 g0 108, (X o ) 5 "
(36)

In (35) and (36) x %(t’) is defined by (20), and the lower
limit of integration has been extended to — « since the
actual value of this limit is ¢t — Af, where Af 2> 7 ;the
contribution from the extended range of integration is
assumed to be negligible due to the smallness of
(8u(X o )8 (X 5ot N fOr [t — 21> 7.

Note that (33), (34), (35), and (36) give an equation for
(F) completely in terms of quantities which refer to the
coordinate system x,. No reference to the special
system used in deriving the equation remains. Thus,we
now have a prescription for finding the equation govern-
ing (F) in any coordinate system X - All that is neces-
sary is to write down (33) (36) for that system and to
find x, as a function of x|, where x, and x/, are points
on the same unperturbed orbit corresponding to { and

t + ¢, respectively.

We should also note that the quantities I', and 4,
cannot in general be interpreted as Fokker- Planck co-

efficients in the usual sense;e.g., I, is not lim
AL —=>(Qr
{8x,/Af), with Ay, being the displacement a particle at

Xu at time ¢ undergoes in the time interval (¢,¢ + Af¢) due
to the presence of g,. Hence we call these quantities
“generalized Fokker-Planck coefficients.”

If G“Z = 0, then the special system Y, and the system
Z, are identical and (33) takes on the form of the usual
Fokker-Planck equation in the Z system derived else-
where in this case,we see from (34), (35),and (36) (with
= Y‘J = Z, for th1s special case) that the quantities
1" " and Az, may be interpreted as (AZ,/At) and
<AZ Y4 /At> The spatially homogeneous plasma with no
external forces is such a case since there the only co-
ordinates of interest are momenta, for which GZ = 0.
In Manheimer's extension of this case to 1nclucfe a uni-
form external magnetic field he proceeded via the
= 0 coordinate system for that case—i.e.,he used a
special case of our more general treatment.

From this discussion we see that we have successfully
extended the Fokker-Planck treatment to turbulent
plasma in an arbitrary external field configuration. Our
choice for phase-space coordinates to describe the
problem is unrestricted. We have made one assumption
in addition to those usually made in deriving the Fokker-
Planck equation,and that is that the turbulence is weak;
this assumption is necessitated by the increased time-
scale of the scattering process in a turbulence-dominat-
ed plasma as opposed to a collision dominated plasma.

We now turn our attention to an alternative approach to
this general problem.

IV. QUASILINEAR APPROACH

In this section we treat the same general problem but
start from the continuity equation. This approach is
nearly identical to that devised by Hall and Sturrock10;
however, they failed to keep terms which were unimport-
ant in the problems they treated but which can make
significant contributions in the general case.17

Our choice of coordinate systems in the generalized set
defined in (15). The continuity equation (5) trans-
formed to this coordinate system .is just
F 6, 2212 4gp. (37)
at axu h aX#
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UF) g B _

We consider first an ensemble of possibie realizations
of the fluctuating fields &y- Each member of the ensem-
ble will have a distribution function F obeying Eq. (37).
We look for an equation for (F), the distribution function
averaged over the ensemble, in terms of ensemble
averages of functionals of &y Taking the ensemble
average of (37), we find that (F) satisfies

AUF) , o ¥R _1

v by . (h( L)) (38)
n

Now we subtract (38) from (37), letting 6F = F — (F),
This procedure yields the following equation for 6F:

a0F 96 F 1

+ G, ——=—~ —[h(g,F — (g, ] 39
at “ax, h axp[ £,F)] %)
For (g,) = 0,(38) and (39) become
UE) 46, X0 L 2 (g oF)), (40)
at ox, K odx,
36F 96 F 1 9
90 y g r 1 9 4o F
at Fax, h axy( £, F))
1

0
¥ 3y BT = (gom]

Equations (40) and (41) may be formally iterated to give
O0F as a perturbation expansion in orders of g;however,
we are interested only in the lowest order terms. If we

know the characteristics of the operator 3 , ~ _9

at Fox,
(i.e.,the unperturbed orhits), the solution of (41) for 6 F
may then be written, to lowest order, as

8F(xo ) =— ft t’h: ai
i)
x {h'g [ x 5(t), P KF[x 5(t"), ' D} + 0(g2),  (42)

where Xu(t ) is the position at time ¢’ on the unperturbed
orbit passing through x , at time ! and ¢, is an initial
time when F = {F) for all members of the ensemble.

The existence of such a time ¢ is assured if we again
assume that we are considering a Markov process, as

in Secs.II and III.

We now suppose that g, is sufficiently small and that
there exists a time mterval t —ty 2> 7 for which the
perturbation expansion (42) converges rapldly In this
event (42) may be inserted into (41), producing the follow-
ing equation for (F):

1 0 t 1 2
at “ax, R ox, (hftodt ot 5

(g [x ot PIF L 0, D) + o<ga>>. (43)

But (43) states that (F[x 5(¢),t']) — (F[X o, ] = O(g2),
since the only change in (F % along the unperturbed orbits
is due to the right-hand side of that equation;thus, we
may replace (F[x /. (t"),#']) by {F(x ,, 1)) in (43), making
an error only of order g4. Performing this operatmn
and using the fact that (1/r")(3/3x )h'A’) = (1/h)
(9/0x ,[rA(9x,/3x )] for any A}, we can put the equa-
tion for F 1nto the more suggestlve form:
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WE) o W1

—— (hT {F))
at Fax, h 9xp( wF)
+ L 9% g m, )
2h axu X v
where
t ]
= [ ar{g\[x 500, ¢ (Xo’t> (45)
to X 1
and
t aXu
My =2, g, [x o &\IXHEN 0 22 (46)
0

XAa

For t —t, > 7 ,,{g,(x, 1) ,(x §t')) becomes negligibly
small for < tO,thus we may extend the lower limit of
integration to — @, incurring negligible error. When
this is done, we see that the set of Eqs. (44)-(46) is
identical to the set (33)-(36) derived from the Fokker-
Planck approach. The derivation of (44) was much more
straightforward than that of (33), but the same assump-
tions were involved in both cases. It is therefore re-
assuring that both produce identical results.

V. SPECIALIZATION TO ELECTROMAGNETIC
FLUCTUATIONS

The equation we have derived, (33) or (44), is valid for
any g, but undergoes significant simplification when the
g are due to electromagnetic fields. In such a case

g# satisfies

ot

=0,
3z,

so that in the system Xu:&y satisfies

¢
—(hg,) = 0. (47)
Xy

From (47) we may then write (45) and (46) as

S

1
r == hD ), (48)
. axu( kv
Ay, =2D,,, (49)
where

L N.Y
Duu - J; dt <gp(Xcat)g)\[Xo(t ))t ]> Sy’ . (50)

0 XA

Thus, (44) may be written

g(_F>+G AF)Y _1 8 (hD

ot axu h ax“ ax

a<F>> (51)
This equation resembles closely the equation derived by
Hall and Sturrock; however, (50) differs from their form-
ula for D, by the factor dx ,/dx 4. Their formula is
formally vahd only in a coordinate system where G, =0,
but they erroneously applied it to the general coordmate
system x .

We note in passing that (51) is a generalized diffusion
equation with a “diffusion tensor” D, ,. This equation is
a generalization of the quasilinear d1ffus1on equation
which appears extensively in the literature.11-15
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VI. CONCLUSIONS

We have developed a formalism capable of treating a
wider class of plasma turbulence problems than was
heretofore possible. This formalism can be developed
from either of two approaches, both giving the same
results; this fact bolsters our confidence in the validity
of the formalism. This formalism may be applied to
such problems of astrophysical interest as heat conduc-
tion in the solar wind4 and particle acceleration in solar
flares.18
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APPENDI{X: THE EXISTENCE OF THE COORDINATE
SYSTEM Y,

That there exists a coordinate system Xy = Y“ , related
to Z, by a transformation of the form (15), such that

G‘J = 0 is easily seen from the following argument: Con-
sider the “unperturbed” equation of motion in the Z
system [i.e., (2) with gf=0],

—dt-‘i =GHZ 4,0, (A1)

For any given GMZ, (Al) has a solution of the form

Z, =£,(Y 1), (A2)
where Y (0 =1,2,---,6) are six integration constants
and

a¢

n

- = G2, (A3)

at #

For each particular choice of ¥, £, ({) traces out a
particular “unperturbed orbit” 1n phase space. Further-
more, through each point Z, there passes one and only
one of these unperturbed orbits; hence, there is a one-to-
one correspondence between Z, and Y,. Therefore, Eq.
(A2) may be interpreted as implicitly defining new
variables Yu as functions of Z, and t,1.e., relating Y“ to
Z, by a transformation of the form (1 5). Thus Y, isa
system of coordinates belonging to the set of systems
denoted by x ,; we may then use (18) to find Glor

GY aY“Jrcz—“ 0 (A4)
n 4
at °az,

since Y, as defined by (A2) and (A3), is constant along
the chafacteristics of the operator (a/at + GHa/32,).
The parameters Y thus determined then form a sultable
coordinate system in which G = 0.
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Theory of elastic constants of heterogeneous media

J. Korringa*
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The theory of elastic equilibrium of heterogeneous, macrohomogeneous bodies is cast in the form of
a linear integral equation with the following properties: (1) The equation contains a constant elastic
tensor which can be chosen freely to optimize any approximation method. (2) The singularity of the
kernel is such that the integral must be interpreted as the principal value, thereby providing a clear
separation between structure-dependent and structure-independent contributions. (3) The mean

elastic tensor equals the above-inentioned constant tensor plus the space average of the dependent
variable. (4) A term proportional to this average appears separately in the equation. (5) The integral
equation facilitates the rederivation of several well-known approximations and opens new possibilities,
of which some are discussed, in particular, a self-consistent imbedding method and an approximation

based on correlation functions.

1. INTRODUCTION

The first theoretical estimates of the velocity of acoustic
waves of long wavelength in heterogeneous elastic mater-
ials did not aim at great accuracy. Recently, theorists
have searched for more refined methods, in order to
improve our understanding of the relation between the
mean elastic constants and the composition and tex-

ture of the medium. This paper contributes to this field
in terms on an integral equation for the stress-tensor of
a heterogeneous, macro-homogeneous material under-
going macro-uniform strain. Considering its simplicity
and its usefulness for deriving known and new approxi-
mations, it is surprising that it has until now gone un-
reported.!

In the next section this equation is derived, on the basis
of the classical theory of elasticity. Subsequent sections
deal with approximate solutions.

2. DERIVATION OF THE FUNDAMENTAL EQUATION

Let the medium be given in terms of the elastic tensor
C(x) = C,;,(x). To a displacement field u(x) = u,(x)
belongs a strain tensor

€(x) = €,;(x) = 3@u; + 3 uy). (1)

The corresponding stress tensor o(x) is given by
Hooke's law, viz.,

0(x) = C(x)e(x) = C;,(x)€ yy(x). (2)
The static equilibrium equation is

Fiju;(x) =0, (3)
where & is the tensor operator

8= 9;Cy; (%)0,. (4)
Let V be a finite volume, bounded by the surface Z, and

let u(x) be defined by (2) and (3) for x € V,with the
boundary condition

u(@) =uo(®), ez, (5)
where
uf(x) = €f;x;, €9 = const. (6)

In terms of €(x) and o(x) thus defined, the mean elastic
tensor C* is,as is well known, given by2

(o) =(Ce) = CXe). (7
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Here the symbol () stands for

(A) = lim V-1 fVA(x)d3x. (8)

Vo0

This boundary value problem will now be transformed
by means of Green's theorem for an auxiliary differen-
tial operator 0, defined as in Eq. (4), but with a constant
tensor3 CO:

F9,=0,C0 110s- (9)
One has, for any two fields U%(x), a = 1,2,

fV[Ug(x')srgj Ul(x') — UHx" ), U2 (x")]d3x’

= [ [02@)riE) — UI@ETIE) %, (10)
where
THZ) = COmn B (€2 ,(R), a=1,2, (11)

n(X) being the outward normal of = in the point . Equa-
tion (10) is used with

UHx) = uyx") —uf(x’), U3x') = Gylx — 1),

k=1,2,3 resp., (12)

where G is the Green's function of §0:

FUGHx — x) = — 8,,63(x — x'), G~ |x—x'|7,

(13)

i.e., the static displacement produced in the medium C©
by a point force under the boundary conditions (5). This
gives, using (5),

1 (0) — ) + [ Gl — %59 ey () — (") ]d% |
= [ Cupl — 10ty R[€ a3 = €0, ] 23"
(14)

In the integral at left one can substitute (3) and trivially
F9.u9 = 0 to get

1777
T (uy—uf) = (F9— Fij)uy. (15)
Introducing the symmetric tensor4
D:500) = [(Cx) — COprle,x), (16)
one has thus
FOu;—ud) =9,p,;;. am
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The volume integral in Eq. (14) will now be transformed
by means of Gauss' theorem giving

fvvlk

x)FQ; [u; (x') — ud(x")d3x’

v-oSije(x — x)p,; (x)d3x’

= J_ Gule — 2, (R (2427, (18)
where the 3-index tensor S is defined by

Sijn=3(8;Gyp +3,G). (19)
The argument of S in Eq. (18) is (x — x'),and in the
volume integrals an infinitesimal sphere containing the
singular point x = x’ has been excluded; ¢ is the surface
of this sphere,n on ¢ and Z is away from the singular
point.

Next,the symmetrized derivative of Eq. (14) is formed.
Owing to the exclusion of the singular point, this can be
done under the integral sign. This gives

€ (%) —€f + fy_kanj(x — x")p;;(x")d3x’
+/, Skz,-(x — 20, (R")n; (2")d2x’
= Sy Suilr — 2[CYal€ (@) — €3,,)
+ by (R, (84227, (20)
where
Thi; = 23,855 + 3,5 (21)

In preparation of taking the limit V — «, uniformly to all
sides, one now subtracts the term f,_S(p)Vndzx from
both sides, where {p), is the average of p over V.5 In
the left- hand side this is transformed with Gauss’
theorem into

fzskli( — & )<pz]>V x)d2z’
= fV_ka”j(x —x' (pij)vd3x'
+ [ Sule — 25 yn; (R1)d2". (22)

From the so transformed Eq. (20) one verifies, by taking
the average over V,

<€>V = 60, (23)

which is obvious from the definition of € and the bound-
ary conditions. One can now take the limit V = ®, As
the medium is macrohomogeneous, one has

lim [ S, (x @) —€9,)
V-0

— % )[ umn mn
+ 0B — by In; (N5 = 0. (24)
Next, taking the limit v = 0 defines the volume integrals
as the principal value and allows the integral over o to
be done. Defining a constant tensor I in terms of C° by

Tim = f Sipp(Xn(R)d22, (25)
one has, denoting {p) = },i_r,?o(ﬁy,
lim foskli(x — x)[pi;(x") — (P (%)

=— DTpujlpi; (0) — ;). (26)
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Thus one obtains, in tensor notation,

) — Tp& — @) =0, (27

where the linear operator A is defined by the principal
value integral

€(x) — €0 + A(p(x) —

(Ap(x))kl _Aklljpl] kallJ(x
From the definition of T one sees that A applied to a
constant is zero, so that the first term in &) of Eq.(27)
can be dropped.

Xy (")d3x".  (28)

As a final transformation, one substitutes € as a function
of p from Eq. (16). Defmmg the reciprocal, B!, of a ten-
sor Bt]kl by Bz] leklmn - Z(GZm in + 6znﬁjm) one has

{[ct) —

Defining

Colt — Tlplx) + Ap(x) + Tp) = €0.  (29)

o(x) = {[Clx) —

and using the linearity of Eq.(29) to introduce a new
variable g(x) with

€O — r} (30)

p(x) = q(x)e®, (31)
one finally has
q(x) + @(x)Aq(x)

This is the desired integral equation. From its solution
g(x) one finds C* by means of

+ o(x)(IXg) — 1) = 0. (32)

C*=C0 + {(g). (33)

This is seen from Egs. (7), (16), (23),and (31).

Equations (32) and (33) give a general and quite compact
formulation of the problem. It is also flexible in that C°
can still be selected freely. This choice affects the
definition of ¢,A, ¢,and T, but C* does, of course,not de-
pend on it.

A reasonable restriction is that CO reflects the rotation-
al macro-symmetry of the medium. Specific choices
will be discussed in connection with approximation
methods.

3. A CRUDE APPROXIMATION

The simplest estimate of C* is found from Egq. (32) by
neglecting the term @Aq. This gives

() + (o)) — 1) = 0, (34)
ie.,

C*= CO+ (1 + {p)) ). (35)

This estimate depends on C0,and two cases are known
from the literature. Hashin and Shtrikman,? assuming
micro- and macroisotropy, obtained the estimate (35) for
the special cases CO = max C(x) and C° = min C(x),and
showed that C* so obtained were upper and lower bounds,
respectively. Kréner,® in a statistical analysis of the
elastic equation, obtained (35) with C° = {C(x)) and con-
cluded that this approximation neglects the effects of
correlation.

The term neglected in Eq. (35) is {¢Aq) and the best
choice of CO in Eq. (35) would be one that minimizes
this expression. Conforming to the approximation (34),
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an estimate of this term is {(@A@)(I{g) — 1). A simple
and reasonable choice is defined by

(@ =0 (36)

which, when inserted in Eq. (35), makes this approxima-
tion 'self-consistent.' In lieu of solving the implicit
equation (36) directly, it is easier to use an iteration
based on Eq.(35). In cases where this approximation
makes sense, this process will converge. Beginning
with C0 = (C(x)), Kréner's result is obtained in the first
step. The ultimate approximation of C* is entirely ex-
pressed in terms of space-averages of functions of C(x),
in short, it depends on the composition of the medium,
but not on its texture. In a following section, the
approximation defined by (35) and (36) will be obtained
as a special case of a more general class of approxi-
mations. This self-consistent, texture independent
approximation will be denoted C*9.

4. SELF-CONSISTENT IMBEDDING

1t is well known that C* is a proximity property.7 That
is, it depends in a sensitive way on the variation of C(x)
from point to point in any small neighbourhood, but does
not depend on the correlation between the values of
C(x) in widely separated points,

This property can be used to find approximate solutions

of Eq. (32). Let £ be any finite simply connected volume,

and let an elastic medium be defined by Cg{x) through
Cqlx) = C(x),
Cqlx) = C9,

x e Q,
x & Q, (37

i.e., CO takes on the function of imbedding medium.
Correspondingly,

a(x) = @(x),
¢g(x) = 0’

x e 8,
x & Q. (38)
Let gg(x) be the solution of Eq.(32) for this medium,

while retaining {(g) in this equation as an unknown con-
stant,i.e.,

dg + GaAgg + gp(Tg) — 1) = 0. (39)
One has
qox) =0, x¢Q (40)

and one expects the approximate relation

9o(¥) ® q(x), x€Q, (41)

the error being dependent on C°. In order to find {g),
consider Eq. (39) to be solved for an ensemble of neigh-
borhoods. Then define

(q> = ((qg)n>av, (42)

where ( ), is the average over ©,and ( ), is the en-
semble average.

Equations (39) and (42) define the problem, but C© is
still arbitrary. A good choice is to imbed in the mean
medium itself, aiming at {g) = 0. In the present approxi-
mation this means

{ga)@)ay = 0. (43)

Equations (33), (39), and (42) suggest a simple iteration
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scheme to achieve this: one begins with, e.g., C0 = C*0,
solves (39) and (42), and calculates the first approxima-
tion of C* with Eq.(33). Using this value as new C0,one
repeats the calculation, etc.

For © — «,the above results become exact. The actual
solution of Eq. (39) in finite, small neighborhoods  can,
e.g., be obtained with numerical methods.

5. ELLIPSOIDAL MODEL

A case of the self-consistent imbedding approximation
which can be traced analytically is obtained by consider-
ing only neighborhoods of ellipsoidal shape E inside of
which the C(x) are constants. How, for a given material,
such an ensemble can be constructed and whether it is
adequate, will not be discussed. The special thing about
this case is that Eq. (39) has the solution

gz(x) =const, =x€E, (44)
and that
AqE(x) = (AE - F)QE, (45)

where A is a tensor whose components are known func-
tions of the value of C inside the ellipsoids, the ratio of
the values of the ellipsoidal axis (a, b, c) and its orienta-
tion in space. Eshelby?® has solved this problem. From
the definition (28) one sees that A, where applied to a
function which is constant inside an ellipsoid and zero
outside, can be transformed to

Aqy = ( fE_OSndzfé)qE, (46)

where 2 is the surface of the ellipsoid, o the surface of
a small sphere around the singular point. Both integrals
are indeed constants and size-independent. Defining

Ag = [ Snd2k (47

and remembering Eq. (25), one obtains Eq. (45). In the
special case that all ellipsoids are spheres, one has
Ag = T and therefore Aq; = 0, which reduces to the
approximation in Sec. 3.

Substitution of (45) in Eq.(39) gives

gz + ¥ (D@ — 1) =0, (48)
where

Ve =[(Cp—CO1— AglL. (49)
Taking the ensemble average and using Eq. (42) gives

@) =1+ @D, (50)
where

) = (Fg)yy- (51)

The calculation of {¥) requires the specification of the
ensemble over shapes, orientations and elastic constants
of the ellipsoids.

Walsh? has used Eshelby's results to estimate the effect
of small concentrations of ellipsoidal inclusions in an
otherwise homogeneous medium. When used as a special
case of a self-consistent imbedding approximation, as
suggested here, one can expect greater flexibility and
accuracy.

6. APPROXIMATION IN TERMS OF CORRELATION
FUNCTIONS

An alternative to the approximations discussed thus far
is one in terms of correlation functions. Equation (32)
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lends itself to this approach. Without touching upon the
merits of this method, a simple example will illustrate
this point.

From Eq. (32) one obtains by a single iteration
q — PAPAq — (pAp — @) (T{g) — 1) = 0. (52)

Next,the operator A is applied, the resulting equation is
multiplied with the components of the tensor ¢{x + y)
(total multiplication, denoted ®) and averaged over space.
This gives

I(y) — {@(x + y)RAP(x)A@(x)Aq(x))

+ [KD(y) — K@ (»)|(Mg>— 1) =0, (53)

where
(y) = (o(x + y)®Aq(x)), (54)
K®(y) = (p(x + y)®[Ao(x)]"). (55)

The second term of Eg.(53), involving the average of
four factors in four different points is now truncated in
such a way that the result is correct for all configura-
tions of these points with a possible exception when all
four points are close together. The validity of this
approximation will thus depend on the relative contribu-
tion of these configurations to this term.

For a product of four random variables a,b, ¢ and d this
truncation is defined by

{abed) — (labey(d) + <+ +) + ({abXed) + -+ )

— 2({abXeXd) + - - - ) + 6{aydXcXd).  (56)
As applied to Eq. (53), three of the variables are ¢'s in
different points and one is g in a fourth point. When it is
assumed that there is no long-range correlation, the
substitution (56) is in error only when the four points
form a cluster.

Of all the terms in (56) those in which the operator A is
applied to an average,i.e., to a constant,are zero. Of
the other terms those of the form {(a{b)cd) and {(ab{c)d)
are new unknown quantities. In order that the trunca-
tion succeeds, it is therefore necessary to choose CO in
such a way that these terms vanish. This is achieved by

() =0, (57)

i.e.,the CO have to be the texture-independent esti-
mate C*0 found in Sec. 3. With this, the second term in
Eq. (53) reduces to

{p(x + ¥)RAQ(x)A@(x)Aq(x) -
(@(x + yIRALP (A p(x)NAq(x))

+ {p(x + y)RALP(X)A@(x)Aq(x))) (58)
where double brackets are used to indicate the pairing.
In both terms the factor ¢ is combined with ¢ as in one
of the components of the tensor Il, while the other factor
is a component of the tensor

F(z) = (p(x + 2)®¢(x)). (59)
In order to write the resulting equations explicitly, the
indices have to be reintroduced. As all tensors are sym-
metric in pairs of (Latin) indices, each pair can be de-
noted by one (Greek) index, e.g., (,7) = A.

Interchanging the order of the averaging with the inte-
gration in the A operator gives
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Hpo ‘rn(y) - fdx’TKp(x’)fdx,’Trx(x’l)
x[Fpaw(x' + 17+ DI, (%"
I (7 + x4 9)Fy (2]
+ (K@) — K&, 0IT,,4q,,)—8,,)=0.  (60)

Here, according to Egs. (54) and (55),

Foow®) =@ qx + 9)9,,(x)),
KL () = fdx’TT)\(x’)FPOM(x’ + y),
K@) () = [dx"T 5 (x") fdx'T, , (x")
X(P ol + X7 + 9}y ()@, (x — 2D (61)

The quantity {(g) in the last term of Eq. (60) can be ex-
pressed in terms of I1(0). By taking the average of Eq.
(32) and using (@) = 0, one finds, from the definition (54)
of II,

<qm‘> =— Hp)\)\p(o)- (62)
From the solution II(y) of Eq. (60) the mean elastic con-
stants are found with Eq. (33) and Eq. (62). Thus,

Cp*n = Cpon - Hpogn(o)’ (63)

where CO have the values C*0 as indicated above.

The two-point correlation function F(z) defined by Eq.
(59) plays a very special role in the kernal of Eq. (60)
for I(y). This illustrates the difference between a
cluster expansion, as used above, and a straightforward
iteration method1,10, For example, from Eq. (32) one
easily derives

g+ DP@AP g + 3 ( 1)*(@AFe(Tig) — 1) = 0.
k=0 (64)

Assuming that the expansion converges in the average,
i.e., that

Hm ((pa)rq) = 0, (65)
one is led to
@+ kg())(— 1)E (@A) @) (T{g) — 1) = 0. (66)

In this series the first term is zero on account of Eq.
(57). The second term vanishes,

(pAg) = <<p(x)fd3x’T(x — x)o(x'))

= fd3x’(cp(x)T(x —xNox N =0 (67)
because of the relation between 7'(x — x’) and the sym-
metry of the crystal. (For example, if the medium is
macro-isotropic, {¢(x)@(x — x’)) depends only on |x’}{,
while the average of T over all directions is zero.) This
leaves only third- and higher-order correlations in ¢,

in apparent contrast to Eq. (60). However, one can show
that K@) in Eq. (60) is zero for macroisotropic bodies,
thus removing the two-point correlation from the driving
term.
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materials. I. Perturbation expansions for the effective
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A perturbation formulation is developed for the effective permittivity of random heterogeneous
materials that are statistically homogeneous but not necessarily statistically isotropic. The formal
perturbation solution is expressed explicitly by means of the many-point correlation functions of
the permittivity field. For a broad class of random multiphase materials called cell materials, the
second- and third-order perturbation effects are determined as functions of the depolarizing factor
tensors of cells. In the special case where the medium is statistically isotropic, the formulas giving
the effective permittivity to third order are shown to be in substantial accord with the results

obtained by previous investigators.

1. INTRODUCTION

The present work is concerned with the effective or
overall physical property of a heterogeneous material
whose local property may be regarded as a random
function of position. It is of practical importance to pre-
dict the effective physical constants of heterogeneous
materials such as suspensions, mixtures, polycrystals,
and composite materials. We shall restrict ourselves to
electrical, thermal, and magnetic properties that are
described by a proportionality factor between a sole-
noidal vector and an irrotational vector. The termino-
logy used hereafter will be that of the dielectric prob-
lem. For reasons of mathematical analogy the results
obtained also hold for magnetic permeability, electrical
and thermal conductivity, and diffusion constant.

The problem of determining the effective permittivity of
a random heterogeneous material has received repeated
attention in recent years. Brown,! Beran and Moly-
neux,? and other authors3-8 employed perturbation
methods to analyze the static dielectric behavior of a
medium with small random fluctuations in permittivity.
The perturbation theories were extended to treat the
dynamic dielectric behavior of a time-dependent hetero-
geneous medium.%-14 Brown,15 Beran,16 and Beran
and Molyneux17 derived bounds on the effective per-
mittivity by using perturbation series as trial functions.
Miller18.19 and Beran and Silnutzer2© showed that for a
wide class of random multiphase materials these
bounds can be expressed in terms of volume fractions
and shape factors.

Most of previous investigations deal with random media
which are considered to be statistically homogeneous and
isotropic. However, in some cases the assumption of
statistical isotropy is not appropriate. For example,
suspensions of oriented particles or fiber-reinforced
composites are anisotropic on a macroscopic scale.
The purpose of this paper is to obtain perturbation ex-
pansions for the effective permittivity of such inhomo-
geneous anisotropic media. In Sec. 2 we shall develop a
general perturbation formulation to cover the case
where the material is not necessarily statistically iso-
tropic. In Sec. 3 explicit calculations for the second-
order and third-order perturbation effects will be
carried out on the basis of the cell model introduced by
Miller.18.19

2. OUTLINE OF THE PERTURBATION FORMULATION

A. Basic concepts and governing equations
We are interested in a heterogeneous material with

514 J. Math. Phys., Vol. 14, No. 4, April 1973

random variations in permittivity. The volume V of the
material is taken to be infinite. Assume that the medium
is locally isotropic and let (r) be the permittivity at a
point r, Then {e(r), reV} forms a stochastic process
with continuous space parameters. The n-point moment
of €(r) is defined as (e(r,)e(ry)- -« - €(r,)), where the
brackets ( ) denote the mathematical expectation or the
ensemble average. Assume further that the process

(r)} is almost surely differentiable as many times as
required. As a matter of fact, the process representing
a random multiphase material possesses derivatives of
all orders with probability one. In such a case it may be
shown that under mild conditions there exists the nth
partial derivative of {e(r,)e(ry)- - - €(r,)) with respect to
ry,rg,...,Tr,.
In the following we shall suppose that the medium is
statistically homogeneous, or equivalently, that the pro-
cess {e(r)} is strictly stationary in space. Thus, the 7-
point moment ¢ e(r,)e(ry)- - - e(rn)) does not depend upon
the absolute positions ry,r,,...,r,, but instead depends
only upon the relative positions ry, =1, —ry,ry5 =
rs —Try,...,r;, =r, —ry;thatis,

(e(ry)e(ry) - e(r,)) = (e(O)e(ryp) - e(ry,)).  (2.1)

In particular, the expectation (e(r)) becomes a constant
within the material volume V, so that we can write
(e(r)) = (). Note that statistical isotropy is not always
assumed. For a statistically homogeneous medium it is
common to make an ergodic—-type hypothesis that the
ensemble average can be replaced by the volume average.
In this sense, we postulate that

(et)) = Jim (1/V) [ e(r)dw (2.2)

holds with probability one, dw indicating a volume ele-
ment of V at r.

The basic equations governing the static electrie field
in a material with variable permittivity e(r) are

L [e@E, @] =0, (2.3)
E,(r) = — __ag;(r) . (2. 4)

Here E;(r) is the ¢th component of the electric field,
&(r) is the electrostatic potential, and the summation
convention has been employed. For simplicity we shall
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consider the average electric field to be independent of
r. Fluctuations about the mean values of E;(r) and €(r)
are therefore given by

—<Ei>9
—<€>y

Ej(r) = E,(r) (E;(r)) =0,

(e'(r)) = 0.

(2.5)

€ (r) = e(r) (2. 6)
In terms of E;(r) and €' (r) the governing equation (2. 3)
can be written as

dE’ (r) (E;) 9€’ () 1 3
—— = —— — [ ®ME;®)]. (2.7
8x,; (€) ox, (e)y ox;
Using the free-space Green's function for the Laplacian
operator, one may formally solve Eq. (2. 7) as follows?:

(( >f xlz; o€’ (ry)

12° 8%y

[e (r)E r2)]) (2. 8)

Ej(ry) = 4<>

+ fvdw Xaz.

"2332

j

where dw, designates a volume element in the space of
r,. It should be noticed that the comma in a subscript
does not mean partial differentiation. Equation (2. 8) is a
random integral equation for E;(r,) which we wish to
solve.

The effective permittivity tensor e’i‘j of a heterogeneous
medium having statistical anisotropy is defined by the
linear relation

<€(T)Ei(r)> = €:j<Ej>y {2.9)
or alternatively by the energy relation
%(e(l’)Ei(r)Ei(l‘) = §€*<E ><E ). (2.10)

The equivalence of the above two definitions can be
established exactly as in the case of statistically iso-
tropic materials.21 Substitution of Eqgs. (2.5) and (2. 6)
into Eq. (2. 9) gives

€55(E;) = (€XE;) + (' (1) E;(r)). (2.11)
If we set
(' () E(r)) = — A, (eXE;), (2.12)

the factor A,; is a dimensionless quantity determined
by the statlstlcal properties of e(r). It follows from
Eq.(2.11) that

E);j= <€>(61] —Aij)’ (2' 13)
where §;; is the Kronecker delta. For a statlstlcally
isotropic medium the effectlve permittivity tensor e
reduces to a scalar €* such that

*= () (1 — A) (2.14)

B. Formal perturbation solution

In order to use a perturbation procedure we should have
a small quantity that is of interest. Here the fluctua-
tions in permittivity are considered to be very small
compared with its mean value. In statistical terms we
assume that with probability one

e (r)|/{e) < 1, (2. 15)
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and consequently that for any positive integer n
e =Dierm <1, (e /e)t = o((e' " /e)™
(2.16)

Moreover, it is supposed that the solution of Eq. (2. 7)
can be expanded in a power series of the parameter
€' (r)/{e) as follows:

,

By = EPm + EP @ + oo = BEPE, @17

where E(") (r) is of the same order of smallness as
(E; (€ (r) /{€)]* and satisfies
(EPE) =0 (2.18)

In this paper we shall not discuss the problem of con-
vergence of such perturbation expansions.

The integral equation (2. 8) may be solved formally by
iteration. Substituting Eq. (2. 17) into Eq. (2. 8) and
equating terms of like order of magnitude, we find

@ (E;) Xy, O€'(ry)
EX @) = d — 2.19
() 4n{e) f" w21’123 0%3 ; 219
@ (E;) X125 @ X232
E 7 (r = —— > dw
i ( 1) (4”(6))2 fV 21’123 axz'k fV 37233
de' (ry)e’ (v
2 3), (2. 20)
%3

and so on. For later convenience, we rewrite these
equations in the form

Wy = Ed g g, , Fras 260D (2.21)
4mie) "V 7193 xpp
@ (E;) X12,
EPwy = —3_ | de
PUUT @men2 v 2y 3 axy kf *
% x23,k 36'(1‘2)6’(1‘3)
723%  94p3;
(E;) ¥12, Y23,k
=____f W0, o =22 fdw :
@n(e)2 v 2y .3 X195 " 23"233
3e’ '
x 2 (ro)e'lry)
0%23,;
(E;) X124 X3 02€ (rp)e’ (r3)
= g Jydwial duyy =2 22
(4m¢e)) 712° ¥23° %13 £0X23 ;
(2.22)
Similarly,
(n) <EJ>
(ry) = Wfvd“’lvade:’.”dew"'"*l
Xy X 3%€’ (rp)e’ (rg) -+ e'(r
o X124 Fask 2 3 ”*1). (2. 23)

3
Y123 75358 0%13, ,0%p3 5" 0%

n,ntl;j

The independent variables in the integrals have been

changed from rl,rz,... atory,ri,=r, —ry, ...,
avl = T o1 I averagmg commutes with differen-

tiatlon and’ mtegratlon
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)

<E§")(r1)> - (e fvd‘*’lzfyd“’%' ” fV @, e

F1zi ¥z a™e'(ry)e'(rg) - ¢

3
7123 7333

(r n+1)>

n,ntl;j

(2. 24)
axlz,kaxza_h---ax

The nth-order perturbation field E;") (r,) in Eq. (2. 23)
obeys automatically the requirement (2. 18), because
(e'(ry)e’(rg) -+ €' (r,,1)) is independent of ry,.

Let us seek the perturbation series of the effective per-
mittivity tensor €};. By introducing Eq. (2.17) in Eq.
(2.11), we see that

o0
€I(E;) = (e)(E,) + zl (€ (r)EP (r,). (2. 25)
ne
By virtue of Eq. (2. 23), it follows that
, (E;) :
(¢'(r)E{ () = @mnenn fvd“-’lzfydwzs" -
W Frzi Fage WMy et ) o,
7123 7533 0%12,29%33 1" " 0%y 4e1yj

Since the medium is statistically homogeneous, the
(n + 1)th moment (¢’ (r )€’ (ry)--- € (r,,1)) can be re-
presented as

<€'(1'1)€l (rz)' c-€ (rn+1))
= <€’”+1>f(r12’ 1'13, sy rl,n+1)' (2' 27)
The dimensionless quantity f(ri,,ry3,..., 1‘1,n+1) sig=

nifies the normalized (# + 1)-point correlation function
of €(r). Combination of Eq. (2. 13) with Eqgs. (2. 26) and
(2. 27) yields

* X ) <€ n)
€5 —<e><6z-,- —;2(— DA o (2.28)
where
— 1\ #-1
()
A7 =( 411) fvdwlzfvdeS.“fydwn—l,n
x X124 ¥23p | 8" (r15,T13,..,71,)
7123 7533 axlz,kaxzs,h"'axn-l,n;;
(2.29)

The nth-order perturbation coefficient A(]") is thus ex-
pressed explicitly in terms of the normalized n-point
correlation function f(ry5,ry5,...,Ty,).

C. Second-order perturbation term

The second-order perturbation coefficient A(izj) is a
dimensionless second-order tensor defined as

A(z) ——f "121 af(rlz)’ (2.30)

7193 %13 ;

flryy) = (r)e (r)) Ke'?). (2.31)
Henceforth, we shall call A(é) the average depolarizing
factor tensor or the effective magnetometric demagne-

tizaton tensor. As regards the reason of this naming we
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refer to Sec. 3B. The normalized two-point correlation
function f(r,,) satisfies the well-known inequality

| flri)l < 1. (2.32)
Boundary conditions imposed upon f(r,,) are
1 as|ry,| -0
flryz) » (2.33)
0 as [ry,| -

for it is natural to expect that the correlation between
€'(ry) and €' (ry + r;,) must vanish as |r,;,| > . Ina
spherical coordinate system (r 5,65, ¢45) the two~
point correlation function f(r,,, 8,4, ¢, meets the con-
ditions

F(0,810,012) =1, f(®,8,5,¢41,) =0.

For the partial derivatives of f(# 15, 615,%15) we assume
that as 7,9 > @

(2.34)

8f (712,012, 015) 1
/712,012, $10) _ o<_) (2. 352)
0712 Y12
0f 12,010, ¢12)
12>V12) %12 5 0’ (2. 35b)
9615
0f(12,012,¢19)
12:912,®12 0. (2. 350)
Lo
The expression (2. 30) for A,‘f) may be recast as
1. 1 82f(r,,)
AP = —— [ o, — ——2F (2.36)
4m Y12 X123 0%13 ;

In fact, after integrating by parts and applying Gauss'
theorem, we obtain from Eq. (2. 30)

3 (L) af(ryy)

8%12,; 12’ %12 ;

1 f dOlz af(ry) 1
dm 7S v, ,2 0%99 ; 47

1 0%f(ry9)

ki

% (2.37),

Y1z 0%33 ;0%13 ;

where S is the bounding surface of the medium V, do,
an area element of the surface S, and n; the x; compo-
nent of an outward unit normal to the surface element
doy,. Since Egs. (2. 352)—(2.35¢) imply that 7 {387 (r,,)/
8%y ; — 0 as 7, — ©, the surface integral on the right-
hand side of Eq. (2. 37) approaches zero as V — o, so
that the proof of Eq. (2. 36) is accomplished.

Another important formula expressing Ag) is

@ _ 1
i (4m)2

Xyp Xgp 02f(ryy)

(2.38)
793 753 0%y ; 0%y 5

fvdwlf dwy —=

Through the transformation of variables (ry =r;,r 5 =
r, —r,) the right-hand side in Eq. (2. 38) becomes

X1 ¥ %(ry))

dw dw _—
(411 f 1f 2y 373ax118x2]
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1 32f(r.,) X x
=— fdwlz———ﬁ—lz———fdwlﬁ__%f_
(4m?2 v %19 3 0%12,; ¥ 713 7,3
(2.39)
In spherical coordinates we have
X1p X x 0 1
[ aw, SAE TR (g, Min (__>
4 r43 7,8 4 713 3xy p\7y
27 X1,k 0 1
= f d¢)1f d91 Slnelf d'fl —
Vi 0%y p \7g
2 0 1 47
—-f ”d¢1f de, sind f dry — (——):———,
ry \¥g 712
(2.40)

considering that dx, ,/d»; = x; ,/r,. Comparison of
Egs. (2. 39) and (2. 40) with Eq. (2. 36) verifies that Eq.
(2. 38) is valid as asserted.

We now observe that the average depolarizing factor
tensor A?) has the following fundamental properties:

i) AP =42, (2.41)
i) A2 =1, (2.42)
(i) 42 = o; (2.43)
the subscript (/) indicates no summation on ¢. In words,

Ag) is a symmetric second-order tensor with nonnega-
tive diagonal elements whose trace equals unity. Pro-
perty (i) is obvious from Eq. (2.36) or (2.38). To deduce
property (ii), set j = 7 in Eq. (2. 30) and sum up over the
index . Then,

4@ _ 1 dwip %y, 3(ryy)
i v 2
41V 1% 7y 0xpp
1 27 T .
= —_Efo d¢12f0 91 Sindy,

f (19,010,912
0715

x[dry, =1 (2. 44)

For the proof of property (iii) we use Eq. (2. 38); that is,

(€' (rqy)e’ (ry))
(e'2)

f xlk de’ (r l)f o Kok de’ (ry)
(411 2(6'2) 13 3%y ; 7 21’23 3% (i)

1 x, 0€ (r)\2
. ald = 0.
@ne?) <<fvd“’rs P >>

On account of the symmetric character of the average
depolarizing factor tensor A", there exist three princi-
pal values A12) A(2) AéZ) which satisfy

Xy X 92
f 1f duoy 22k 1,k X2.2

(41r)2 713 753 9xy ; 0%y ;)

(2.45)

Aiz) “"Az +A(2) =1, (2. 46)

and

A(2) (2),A:(32) = 0. (2.47)

When the principal axes are parallel to the coordinate
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axes, we can write

2 2
Ai(j) =A§z;611 (2.48)
The transformation law of Ag) shows that
2 2)
AT = aua;40, (2.49)
where
Aip Qi = Qpyly; = O45. (2.50)

The coefficient a;; stands for the direction cosine of the
ith coordinate axis with respect to the jth principal axis.

As a special case we consider a statistically isotropic
material for which f(r,) is a function of vy, = [ry,|

alone. In this case,AS?)
such that

must be an isotropic tensor

(2)

A? =4 (2.51)

Equations (2. 42) and (2.51) permit us to determine the
value of A® as

which is equivalent to
AP = AP AP =1, (2.53)

The expression for the effective permittivity €* of a
statistically isotropic material to second order reduces
to

*=(e)(1 —3{e2/Ne) 2,

in agreement with the results of Brown,! Nedoluha,3
Landau and Lifshitz,4 Herring,3 Beran and Molyneux, 2
and Beran.8.16

(2.54)

D. Third-order perturbation term

In this section we shall be concerned with the behav1or
of the third-order perturbation coefficient AU . Since

the normalized three-point correlation function
f(ris,r14) may also be regarded as a function of ry,
and ry 3, we have

92f (ry5,T13)

0%12 £9%23 j

X12,i ¥23,k

3
Ay = 3 3
Y127 73

(4m)2 ’
1 X21,; X234 028(r21,Ta3)

am2 fV 21f, dwys 31 3 :
(4m) ¥21¥ ¥23° %33 0%23 ;
(2. 55)

il

2

where

f(r12y 1'13) :g(rzp 1'23) = <€'(1'1)€’(1'2)5’(1'3))/(6'3)-

(2.586)

In spherical coordinates boundary conditions for
821,021, 921;7 23,023, $23) are
g(0, 021,%21; 0, 023’ ¢ 23) =1,

8(0,051,¢ 2157 23,023, ¢ 23)

= a function of 7 53,8 53, $ 55 alone,

(2.57a)

(2.57b)

8ra1,021,9215 0,053, ¢22)

= a function of 754, 0,4, ¢ 5, alone, (2.57¢)
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8(0,0,4,001:753,853,003) =&Fay,051,021; @, 623, ¢ 23)
=g(0,051,051;%,053,$,3) =0. (2.57d)

Subsidiary assumptions corresponding to Eqs. (2. 35a) -
(2.35c) are

080 21,021, 92157 23,023 P23) a(%)

as 7y, -0,
731 21 (2.58a)
08 21,6021, 92157 23,023, P 23) _0(_1) A4S 7o n = 0
= 23 = O,
8753 Y23 (2.58b)

98(%,051,921;7 23,023, P23)

_ 98(%,051, 92157 23,023, P93) _ 0 (2.58¢)
2921 ’
98 21,6021, 2159, 023, P 53)
9023
_ 381,051, 921; 9,023, 23) =0 (2.58d)
0 23

Proceeding in the same manner as we did in the previous
section, we recast Eq. (2. 55) as

1 f i f p 1 1
w Wog — ——

v Warly G0z "3
a4g(r21,r23)

0%pq,;0%51 x0%23 £0%23,;

@ _
Y 4me2

(2.59)

>

which is obtained by use of partial integration and Gauss'
theorem. The above formula demonstrates that

AD =A%, (2. 60)
whence A,f?) has three principal values Ais) , Aés) , Aéa) ,
and obeys the transformation law

AD =040, A8, (2. 61)
Similarly, the relations

AP =AP (2. 62)

hold for all n. This result is compatible with the well-
established fact that the permittivity tensor of an aniso-
tropic material is symmetric.

When the medium is statistically isotropic, the third-
order perturbation coefficient AS) must be of the form

AD =a®s, =14%5,;. (2. 63)

ij

The two-point correlation function g(r,,, ry5) depends
only on |ryq |, Irysl,and ryqer,g, so that

&(ray,Ta3) =8W3oq,7 53 4), (2. 64)
where
X X9
u=2L1723:3 o 0050, cosfy,
721723
+ sinf,; sind,; cos(P gy — P a3). (2.65)
Putting

851,703, %) =frg))fras) + AW 59,7 23, %), (2.66)
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we get
A =20 L [, T2 F23s
9 3(4amz2-v 21y 723 7313 7,45
92Ag8(roq,7 93, %)
x SoE 210 28 Wy 6
0%g1,; 9%23,
The quantity Ag(r 5,7 55, %) satisfies the conditions
Ag(o’ 09 u) = Ag(wv723yu) = Ag(’)’21’wy u)
= Ag(w,0,u) =0, (2.68a)
Ag(0,7 53, u) = Ag(0,7 53, 0), (2. 68b)
AgWr oy, 0,u) = Aglryy, 0, 0), (2. 68c)
AL 51,7 94, U) 1
£ 21,7 23 =0( ) as7,; oo,  (2.692)
7y, Y21
0085y, 70n, U 1
0881 21,7 23, %) = o(;——) as g3 =9, (2. 69b)
67 3 23
0Ag(w0, 7 5q,u 0A8(r 21, O, 1
g2 7330) _ 2880200 _ (2. 690)

ou ou

We want to express A® in terms of spherical coordi-
nates. The integral

1 Xoa: 0AZT o1,V 0aq, U
Ly(ryy) = —— [ dw,, ~224 &1 725 1) (2.70)
4n 7V 7333 %23,

appearing in Eq. (2. 67) is an isotropic tensor and has
the form22

X9y i %oy ;
L;(ray) = Blryy) —=L 2ol 4 Corppoy.  (2.70)
21 721
Accordingly,
Iii(I‘z]_) = B('rz]_) + 3C(721)
1 .2« ™ . © dAg
= “Efo by [ d8y5 sindpg [ dryy —
= Ag(r 54, 0, 0). (2.72)

For the evaluation of B(r,,) and C(r5,) choose r,, to lie
along the x5 axis; then

or x
u = €088 53, 28 _ 7233 _ 08,4, (2.73a)
0%23,3 723
du 1 <x21,3 x23‘3> 1 —cos26,4
8x T r ¥
23,3 23 V721 23 23 (5 73n)

From Egs.(2.70), (2.71), and (2. 73) we obtain

I353(ryy) = Bry,y) + Cryp,)

2 1—u2 aa
ag u g)

1 .2x 1 ©
= — — du dr u<u
47 fo dqbzsf'l fo 23 8 93 V23 du

=— Ag(r,4,0,0) —— —== | duu(l —u2)—.
3 21,0,0) Zf(’ a3 f—1 ( )au
(2.74)
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The solutions of Egs. (2. 72) and (2. 74) are

3 (0 d7a3 og
B(ry,) = duu(l —u?) =, (2.75
) == lo o S dwutt —ur) )
1 1 o drgy og
— — — —2y =2
Clrayy) = —Ag(ry,,0,0) + 4[0 - f_l du u(l —u?) o

(2.76)
It is easy to calculate A by employing the values of

B(r ;) and C(r ;) given above. Differentiation of I;;
(ry,) with respect to x,, ; yields

2B(r,q)

Y21

8l;;(rq) =<dB(721) N

N dC(1'21)> Xa1 4
dr,q )

%31 ; dray / Vg1
(2.77)
Inserting Eqs. (2.75)=-(2.77) into Eq. (2. 67), we have,

finally,

A = l _ ._l_f dwsy, *21,i ani(r21)

9 34x 7V 7213 xp1;

_ 11 [®ar, (dB(1'21) 2B(r 5,) N dC('rzl)>
9 370 drg, Y321 dr g,
1 dr dr

=_+_f°° 21f°° 23f w(1 —u2)
9 270 7y 0 wyy 7T
381,723, %)

x SN T (2.78)

ou

a result that has already been found by Molyneux.7 The
effective constant ¢* to third order is therefore written
as

b
Lt s =iy 22330 (]

o3 L et oty
xf_ll du(3u2 — 0)gr 41,7 55, u) %2] (2.79)

3. CALCULATIONS BASED ON THE CELL MODEL
A. Definition of cell materials

Miller18.19 has proposed a cell model to represent a
broad class of random multiphase materials. The
material volume is assumed to be subdivided into a large
number of closed cells within which the material pro-
perty € is constant. The subdivision of the material space
is arbitrary except for fulfilling the following require-
ments:

(i) The space is completely covered by nonoverlapping
cells;

(ii) cells are distributed in a manner such that the
material is statistically homogeneous and isotropic;

(iii) the material property € of a cell is statistically in-
dependent of the material property of any other cell.
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In order to generalize Miller's cell modeél to statisti-
cally anisotropic materials, we must replace the assump-
tion (ii) by

(ii") cells are distributed in a manner such that the
material is statistically homogeneous.

A cell material can be defined as a random heterogeneous
material that satisfies the above requirements (i), (ii),
(iii) or (i), (ii"), (iii). Furthermore, the cell material is
called symmetric or asymmetric, according as the fol-
lowing additional requirement is or is not satisfied:

(iv) The conditional probabilities of » points being and
n’ points not being in the same cell of a particular
material, given that one point is in a cell of that
material, are the same for each material.

In other words, the term symmetric cell material means
a cell material in which the statistical properties of the
geometry of all phases are identical. For the asym-
metric cell materials, however, the geometry of the
cells of different permittivities is dissimilar.

We consider an asymmetric cell material composed of
N phases. Let v; be the volume fraction of the /th phase
with property €,. or equivalently, the probability of the
event {e(r) = €,7. Then we have

N
ry) = 2 Le (r) e (ry)le(ry) =€), (3.1

(e’ (ry)e’

where (€’ (rl)e (ry)le(r,) = ¢,) indicates the expectation
of €'(r;) e’ (r,) under the condltmn that e(r;) = ¢€;. It is
obvious from the independence assumption (iii) that this
conditional expectation takes the values €,2 = (¢, — (€))2
when both points r; and r, are in the same cell and 0
otherwise, The two-~point correlation function is there-
fore

(e"(r)e’ (r2)>
(e'?

E v,€,2P,(r,,T,).

5 4 (3.2)

f(rlz) =

Here P,(r,, r,) denotes the conditional probability that
two points r; and r, lie in the same cell, given that one

of the points lies in a cell with property €,. Substitution
of Eqg. (3. 3) into Eq. (2. 30) gives
AP = Ev, A2, (3.3)

(e'z)z 1

where Ag)(l) is the average depolarizing factor tensor
of the I/th phase, namely,

1 X1p,; OPy(rq,1y)
L, A (3.4)

AP = —— [ doy, 22

v
4n r12%  0%yp

The symmetric cell material is a special case of the
asymmetric cell material in which the probability
Py(r,,r,) does not depend on I, so that

f(rlz)

In this case the two-point correlation function f(r,,)
may be interpreted as the absolute probability that two
points ry and r, are contamed in the same cell. The ex-

pression (2 30) for A( becomes

=P,(r,,ry) =P(ry,r,). (3.5)

¥1g, OP(ry,ry)

1
()
Aij =—;fvdw1 (3'6)

2
3
712° 0%y ;
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Comparison of Egs.(3.4) and (3. 6) leads to the following
conclusion: Using an averaging formula as described in

(3. 3), we can estimate the values of Aﬁ) for an asym-

metric cell material from those for symmetric cell
materials. Similar arguments would apply also to
higher-order perturbation coefficients. Hence we shall
confine ourselves to the symmetric-cell case.

In addition, Eq. (3. 6) shows that A,(? for a symmetric
cell material depends only on the geometry of cells.
Important parameters characterizing the cell geometry
are shape, size, orientation, and arrangement. For in-

stance, Ag) for a symmetric material comprising cells
of different shapes is determined by the volume average

of Ai(]?) over all shapes. If w,, and Ag) [#] are the volume
fraction and the average depolarizing factor tensor of
cells of the mth shape, respectively, we obtain a simple
averaging formula
A ) E w,,
m

@
A5 m].

(3.7
In Sec. 3B it will be verified that A( ) is independent of
the cell size. Owing to the 1ndependence assumption
(iii), the influence of relative positions of cells upon A j
need not be taken into account.

2

B. Second-order perturbation term

We first treat a symmetric cell material composed of
cells of uniform shape, size, and orientation. In the pre-
ceding section we have pointed out that the two-point
correlation function f(r,,) is equal to the probability
P(rq,r,) that two points r, and r, are in the same cell.
Denote by M, the cell whose center (of mass) is located
at ry. Then centers of cells including the point r; fall
into a region M, that results from the inversion of M,
about ry. Similarly, centers of cells including the point
r, form another region M, which can be transformed
into M by means of a translation. Because of the
stat1st1ca1 homogeneity of the medium, P(r,,r,) may be
regarded as the ratio of the volume of the intersection
M, 0 M, to that of M, or M,. If the cell volume is v,

1

fMM—,_, dwzo/f;,z dwzo =7, dw 3o

P(ry,ry) = MM,

(3.8)

Especially, for spherical cells of radius p,

1 —37r,,/4p + 7§,/16p3 forv,, =< 2p
P(ry,ry) =

0 forv,,= 2p. 3.9)
We introduce a characteristic function I(r, 3 such that
I(r,) = 1 or 0 according to whether ry € M, or not. In
terms of Ir, ), we rewrite Eq. (3. 8) as

P(r,,ry) = fdwzol(rlo) (3.10)
Thus, Eq. (3. 6) leads to
oI(r )
@ X12,i 10
AS =— — | dw dw —_
ij f 12f 20 3 ax12 y
1 0 oI(r o)
=— [ dwyof dwyg <——> 0. 3.1
47v "V v %19, W12/ %10,;

Integration by parts yields

92 dwag

1
2
A =—— ] dw
K vf" 10 8x10,10%10.; ¥ 4T7y,
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lfd [ a 22 ( 1 )
=—— ) dw w
p e 105 TT20 8x10_i8x10'j 17 15
! Jdw,o [ d o ( ! ) (3.12
= — @ . .
p Vv 1047720 0x10 ; 0%5q,; \477 19 )

This result shows that the second-order perturbation
coefficient A ) coincides with the so-called magneto-
metric demagnetization tensor,23.24

The point-function demagnetization tensor L;;(rq) is
defined as follows:24.25

92®(r,,)
Lrig) = —— 20—
9%10,1 9%10,;
fa 8 ( ! ) (3.13)
= | dw , .
0 0% 0,4 0%50,; T 1
where
dw
&(ryp) = [ —22 (3.14)

Clearly, ®(r, ) given above is the potential of a uniformly
charged particle of volume v with unit density, satisfying
Poisson's equation in the interior and Laplace's equa-
tion in the exterior. Therefore, we obtain

32&(r, ) 1 ifrgeM,,
A®(ryg) = —F = { (3.15)
0%10, 0 otherwise,
whence
Li(ryo =1. (3.16)

The magnetometric demagnetization tensor is consi-
dered to be the volume average of the point-function de-
magnetization tensor; that is,

-
[y

92&(r, )
(2) 10
A =— f dwqoLii(ri) =

v v fvdwlo

0%10,19%10,;
(3.17)
Now we can confirm that the average depolarizing fac-

tor tensor A(]) depends only on the shape of cells and
not on their size. Assume that a cell M, with volume v’
is geometrically similar and similarly oriented to M.
Applying the formula (3. 12) and changing coordinates,
we see that

A@)'zifdw fdw s (1 )
ij o o ®10J, @20 23101 0%z0,, \AT7 1,

i )
: 41T’I”12

9%39,; %20, ;

il

1
;j;dw'lofvdw'zo

=A2, (3. 18)

which completes the proof. Generally speaking, A
not affected by the size distribution of cells, even when
the medium consists of cells of varying size.

Next, let us discuss the case where identical cells are
randomly oriented. In this case the cell matemal is
statistically isotropic, so that A ’ must be 3 30, a8
shown in Eq. (2.52). In fact, Eq. (2 52) can be derived
from the governing equations of A,j for uniformly
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oriented cells. It goes without saying that Eq. (2.49) des-
cribes the orientation dependence of A;;". Averaging Eq.
(2.49) over all possible orientations, we have

(2

2
AD =(apa0AG . (3.19)

For randomly oriented cells,

(ai1aj1> = <ai2aj2> = (aisaj3), (3. 20)

which, together with the relation {a;; a;;) = 6;;, gives

2. 2
AP =3P + A@ + 4?6, =40y,

; (3. 21)

as was to be proved.

C. Third-order perturbation term

To seek Ag-a) for a symmetric cell material in which
identical cells are uniformly oriented, we investigated the
behavior of the three-point correlation function
f(ryi2,T13) = g(ryy,r,3). The independence hypothesis
asserts that (e'(r,)e (ry)e’ (r3)) vanishes whenever all
the points r,,r,, r5 are not in the same cell. According-

ly,

f(r12y1'13) =g(r21,r23) =P(1'1, ry, 1'3), (3.22)

where P(r,,r,, ;) stands for the probability that three
points ry,r,, r; fall into the same cell. Analogous to
the derivation of Eq. (3. 10), we have

1
P(ry,ry 1) = 3 [ dwyolir; )I(r ). (3.23)

The product of the two characteristic functions I(r, )
X I(r3q) assumes the values 1 whenr, € My N M4
and 0 otherwise.

Combining Egs. (2. 55), (3. 22), and (3. 23), we can write
@_ 1

A = mfvdwzlfvdwzafu dw o

2
X215 X236 021(ry)l(rso)
7213 7333 9xy9 40%53

1
= anzy 5, dw1ofy dwaof,, dw o

X

« 3(1/ryy) 3(1/rag) 3l(ryg) 9Krse)
axlo,,- )

(3. 24)

0%30.2 %10,k 9%3¢,;

By partial integration with respect to the variables x,, ,
and x3¢ ;, Eq. (3. 24) becomes

1

AY = > fvdwlofvdwzofv dwgo

1\ 22 (1

ox ax (4117- ox ox Ty )
X
10, 10,k 21/ 30.,% 30,j \4 23

1

= ;‘j;dwloj;dQ)zof';dw:;O

X 82 ( 1 ) 82 ( 1 )
0%30,:0%20,k 4173y 3%30,28%30,; ‘47723
(3. 25)
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It turns out that the third-order perturbation coefficient

AE?) is related to the point-function demagnetization ten-
sor L;(ryq) by

32&(r,,) 328(ry,)

@ _1
A == [ dwyg
v szo,iaxzolk 6x20,kax20,j

1
= —;fvdwzoL,-k(rzo)ij (rsg). (3. 26)

We shall deal further with the statistically isotropic
case where congruent cells are oriented at random. In
exactly the same way as we derived Eq. (3. 21),

A(i?) =A(3)6ij =%(A§3) +Aé3) +A:(33))6ij
1

-+ 635 ) dwaoLiy2(rae).  (3.27)
v

Using the algebraic identity
3(Ly12 + Lyp2% + L33 = (Lyy + Ly + Lg3)2

+ (Lqy —Lgp)? + (Lpy — L3z + (Lgz — L11)?,
(3.28)
we get from Egs. (3. 16) and (3. 27)

1

A® > ?dezo[an(rzo) + Ly2(rgo) + Ly2(Tyo)] = .
v

(3.29)

Miller18 has already conjectured that for a quantity G
corresponding to A @

s =G=3. (3.30)
In a subsequent paper it will be proved that A® is
equivalent to G introduced by Miller.

D. Ellipsoidal cells

The depolarizing factor tensors of an ellipsoid and its
degenerate shapes (spheroid, sphere, thin plate, long rod,
etc.) are well defined and unique. For these geometries
the point-function demagnetization tensor is constant
throughout the interior of the body, so that it need not be
distinguished from the magnetometric demagnetization
tensor. The eigenvalues of this tensor are the depo-
larizing or demagnetizing factors that have been exten-
sively discussed and tabulated.26.27 It follows from
Eqgs. (3.17) and (3. 26) that for uniformly oriented ellip-
soidal cells

A2 =L,, (3.31)

3
A =Ly Ly;. (3.32)
In words, the second-order and the third-order pertur-
bation coefficients equal the depolarizing factor tensor
and its square, respectively.

When axes of ellipsoidal cells are aligned parallel with
the coordinate axes, Egs. (3.31) and (3. 32) lead to

@ @
Al =AG0; = Loy, (3.33)

3) (&)
Aij =A(t)61] = L(i)zéi]‘, (3. 34)
where L; designate the depolarizing factors of the ellip-
soid. According to potential theory,28 the potential at an
internal point r of an ellipsoid of unit uniform density,
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with center r; and semiaxes a; in the x, directions, may
be expressed in the form
2
Z:;) X10,i >
=1 s + a;2

10505 oo
&(r,o) = 123 fo (1 —

4
X as (é 35
(s + a;2)(s + ay?)(s + az2)1/2’ -39)
Consequently,
od(r a,a-a
A,@:Li:- (10)2= 14243
9%10,() 2
ds
x [ . (3.36)

0 (s + a,;?[(s + a2)(s + ay?)(s + ag?)1/2

As is well known, the integrals in the formulas (3. 36) for
the depolarizing factors of an ellipsoid are in general
elliptic integrals. For a spheroid these integrals reduce
to inverse circular or logarithmic functions. Let a; = a
be the polar semiaxis and a, = a, = ¢ be the equatorial
semiaxis, and put

Ly=1, L,=L,=3(1-1). (3.37)
Then, for an oblate spheroid with the axial ratio o =
a/C < 1,26

1 [1 o
T 1-—a? (1 —a2)l/2

L arccosail =3.  (3.38)

For a prolate spheroid with o = a/c = 1,26

1

a2 —1

logla + (a2 —1)1/2] — 1%5%.
(3.39)

As the axial ratio o increases from 0 to «, the depo-
larizing factor L decreases monotonically from 1 to 0.

(a2 —1)1/2

Several special cases are of interest. When o = 0, the
spheroid degenerates into a plate which is of infinite ex-
tent in two dimensions. In this case, the expression
(3. 38) yields
L=1 A® =a@P =0, 4P -1 (3. 40)
Considering that any component of A,SZ) along the axis of
infinite length must vanish under usual conditions, one
can derive the above equations immediately from the
fundamental relation (2.46). If @ = 1, the cell becomes
a sphere and
L=%, AP =-4P -aP =4 (3.41)
This is a natural consequence of the isotropy of spheres.
As o — ©, the spheroid degenerates into an infinitely long
rod of circular cross section, for which
AP = AP =1, (3.42)

L =20, AP =o.

Unless the rod is axially symmetric, however, Aiz) and
Ag) are not necessarily equal to each other. Actually,
for a long rod of elliptic cross section with a; = a, and
as > ©,
A{Z) _ % . A@ = a1 ’ Aéz) —o.

(3.43)
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Now we can evaluate Ag) for randomly oriented
spheroids. Equations (3. 27) and (3. 37) lead to
—1\2 2 _
AB = %':2<1_§_£> + L2:| = 3L_6_21L1’ (3.44)
from which one may easily deduce the bounds
s =AW =1, (3. 45)

Even when the spheroid is assumed to be oblate, namely,
3 = L =1, the range of A® is given by the inequalities
(3.45). On the other hand, when the spheroid is prolate,
we have 0 = L = %, so that
3§ SA® = ¢, (3.46)
These results do not agree with the bounds derived by

Miller,18 who has obtained 3§ = A® =4 for oblate
spheroids and § = A® =} for prolate spheroids.

In particular, A® = } corresponds to the shape of plates
(L =1),A® =} to the spherical shape (L = %), and
A® = { to the shape of rods of circular cross section
(L = 0) or the shape of oblate spheroids with L = £,
Note that the cell shape is not uniquely determined from
the value of A® . If the long rods with a5 — © have
elliptic cross section, A® becomes

A@):l[( 2 )2( 2 )2]:1[1__2‘_?1‘12_]
3\ay + ay a, +ay 3 (a, + ax)2)

(3.47)

whence we find
5 =A@ =3, (3.48)

It may be shown that the above inequalities hold also for
randomly oriented rods of arbitrary cross section,

E. Nonellipsoidal cells

In nonellipsoidal bodies, the point-function demagnetiza-
tion tensor varies with position, and it is necessary to
define the magnetometric demagnetization tensor as the
volume average. Hence the perturbation coefficients of
nonellipsoidal cells are extremely difficult to compute
in contrast to the case of ellipsoids. For circular
cylinders or rectangular parallelepipeds, however, both
the point-function demagnetization tensor and magneto-
metric demagnetization tensor have so far been calcu-
lated.29-31 By way of example we shall present the
eigenvalues of A for cells of rectangular parallele-
pipeds.

Let us consider a cell material composed of rectangular
parallelepipeds with edge lengths 2b; in the x; direc-

tions. Then the principal axes of Agg) are parallel to
the edges of the ractangular paralleiepipeds. Direct
calculation shows?29

92®(r, ) 1

Lar =
3F10 0x19,3% 47
3
(bs + eqx )[ (b, + e;x44 1211/2
y S arccot| @ ¢¥¥10.3 122)1 ;T eiX10,4 ] 2
ez fatil (b1 + e1%10,1)(8 + €3%10,2)
(3.49)

The principal value of the inverse cotangent should be
taken. From Eq.(3.17) we obtain
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@ _ 1
Az =—5fvdw10L3(r10)

1 20, 2by 25
—_— dt dt S dk
wo o e [ sy

53@12 + §22 + §32)1/2
£185

Il

X arccot

The result of integration is as follows31;

[1 + k2(Bq,B2)]Y/2 _ B2 —1
B1B2 28,
By2—1
28,
N B1K (B4, By) + B2K(Bz, 81)  K(1,B)
2 2 284
_ K(ly Bl) . sz(ly ﬁz) + EE_Z_ + st(lv Bz)
28, B 384 38185
_ B4R(1, 31)+ iz + 23(1,8,) 2
Ba 3B 38,8, 3818,
_ kS(Bly Bz) + kz(Bl:ﬁz)
36182 B182

1
A:§2) = — {2 arccot
'

X K([812 + 1]/2,8,) —

- 1+ k2(B4, Br)32,,
33132[ B1, B2)]

where

By =b1/b3, By =1by/b3,
E2(5,m) = £2 + n?,

k(& +7
K, m) =1 .
=08 e
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(3.50)

K([B22 + 1]1/2,8y)

[t + k(B B2

(3.51)

(3.52a)

(3.52p)

(3.52¢)
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A formulation of the propagator for a quantum system is constructed to simplify computation for
multiparticle systems. The propagator is manifested in terms of any complete set on the Hilbert
space of physical states of the system. In the short-time limit a particularly simple matrix expression
is obtained using an energy eigenstate basis. This formulation is shown to contain all orders of
perturbation theory in an approximate form. Identical particle exchange is handled in a
straightforward manner in which only the number of terms, but not the complexity, of expressions is
affected. The number of terms is held to manageable proportions by approximating multiple-particle
exchange with repeated operations containing only two-particle exchange. Three-particle exchange is

represented exactly by this approximation in the limit of infinitesimal time steps. An argument is
presented that indicates that this is also true for an arbitrary particle number.

1. INTRODUCTION

The question of computing the properties of a quantum
system is posed most generally as the problem of deter-
mining the propagator, or Green’s function of the equa-
tion of motion. This determination may be approached
from various points of view, but the most direct method
is based on the Feynman functional integral formulation
of quantum mechanics.! The relation between the path
integral expression and the corresponding differential
equation has been extensively explored.23

The Wiener integral may be regarded as the “imaginary
time” analog of the Feynman integral, and the two integ-
rals stem from differential equations with identical
eigenstate solutions. Wiener and Wiener-like func-
tional integrals have been directly evaluated numerically
for a number of simple cases.*~ % However, for the
Feynman integral, its elegant simplicity and intuitive
appeal are not reflected in ease of computation for any
systems but the free particle and harmonic oscillator.
In these two cases the Feynman integral can be evalu-
ated analytically. For essentially all other problems, it
has so far resisted both analytic and numerical evalua-
tion,

The propagator formulation proposed here provides an
alternative to the functional integral expression, while
retaining much of its direct simplicity. We were led to
this formulation by the fact that the propagator may be
manifested in terms of any complete set on the Hilbert
space of physical states of a system. By manipulating
the limiting forms of the propagator for small times
and applying the semigroup composition law for the
propagator, we arrive at a particularly simple expres-
sion when we choose an energy eigenstate basis.

This formulation appears to be intermediate between
the Feynman and Schriddinger points of view. Our inten-
tion is to provide a framework in which it may be pos-
sible to perform the ab initio calculation of quantum
systems in the fashion promised, but yet unfulfilled, by
direct functional integration.

For the purpose of practical calculation, two principal
advantages are promised by the proposed formalism,

It retains those characteristics of the Feynman integral
that make time evolution and identical particle exchange
easy to handle.® Also, the ploy of computation in “imagi-
nary time” (or the equivalent, reciprocal temperature)
allows the ground state within the symmetry class of a
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given propagator to be directly extracted.56 For exam-
ple, if the symmetries of the first » eigenstates are
known and are distinct, we may obtain these # eigen-
states simply by this method. An additional advantage

is that the formalism allows one to use available physi-
cal insight by employing basis states that closely
approximate the system. In this regard, the formalism
is akin to approaches stemming directly from the Schro-
dinger equation, but it differs strongly in that this insight
is not necessary.

An analysis of this formalism for the time evolution
operator in terms of its relation to standard perturba-
tion theory expressions is useful. We find that this
formalism contains all orders of approximation in some
form. As a consequence, it has the potential for handling
large “perturbing” Hamiltonians.

Because exchange may be introduced into a calculation
at each infinitesimal time step, the time evolution opera-
tors may be approximated by operators involving only
two particle exchange. In this approximation, multiple
particle exchange occurs naturally over several infinite-
simal time steps.

The major points alluded to above and the development
of the formalism are taken up in the sections below in
the following order: development and discussion of the
fundamental relations including the energy represen-
tation; relationship of this formalism to perturbation
theory; relationship to the interaction picture and intro-
duction of identical particle exchange. In Appendix A
we discuss the generation of full permutation symme-
tries by successive two particle exchange.

2. GENERAL FORMALISM

A quantum system may be described in terms of its
unitary time evolution operator such that

W) = 0@, to)lw o) (2.1)
and, therefore, from the Schrodinger equation,
t . ~
Ott,tg) =1 —i/n | A0, to)dr . (2.2)
(4]

To realize a manifestation of 7 as an integral operator
in a function space, we consider that the physical Hilbert
space, which has all physically permissible |¢(¢)) as
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elements, is spanned by a complete set of elements
{l@)}. This set may be parametrized by a discrete or
continuous set of complex numbers {a}. Integrals de-
fined over o are henceforth to be understood in a gene-
ral sense: as either .sums or integrals as is appropriate
to the particular set {a}. The integral representation of
U in terms of « is then

(a'ly)) = [dala’|T¢, )l a)alw(y), (2.3)
where the integral operator is now over the new Hilbert
space of functions on the parameter set {oz} . We will
refer here to the kernel of Eq. (2. 3) as the propagator:

Kla,a’,t,t,) =’ | T, t)l o). (2.4)
When the complete set employed is {|x)}, the configura-
tion space states, we recover the familiar form

KXy, Xy, t, 1) = <x2lexp<—% ft: ﬁ(T)d‘r) )x1>
= exp<— % ft: ﬁ(xz)d7> 6(x,— Xq) (2.5)

(where A (x,) acts only on the X, coordinate) that may
easily be cast into the usual functional integral form?

K(Xy,X,,t,t) = Af exp(% ftt JZdT):D(x), (2.6)

with £ the classical Lagrangian, A a constant, and f D(x)
indicating functional integration over all “paths” from
X, to X,. Another choice, leading to a functional integral
expression also having a straightforward relation to
classical mechanics, is the continuous set of overcom-
plete coherent states {|z)}, studied in their application
to the propagator by Klauder” and Schweber,8 and in
their generalization to arbitrary “continuous represen-
tations” by Klauder.?

If the interval ({ — ¢,) is divided into N equal small inter-
vals 7,the composition law

Ut ) = Ut t,) T, t,)

permits us to write

N-1
K(ag, oy,tty) = fdozlfdaz- : 'fdﬁ’zv—l ].IJO

K(aj 20t 7). (2.7
But K(o;, 0, ,, 7), for small 7, may be replaced by a
simplified approximate form that effectively transforms
Eq. (2.7) into a limiting multiple Riemann integral form
for the functional integral:

Klag,ay,tt)

N1 o
= lim [do, [da,--- [doy, I Bloy, a5, 7).
N—c0
NT=t-ty) (2.8)
The possibility of replacing K(a,, a;,,, 7) by
exp[(z‘/h’)TS(aj s °’j+1,7)] where this (generalized function)
is defined by

Sy, o,

1y T =— (ifi/-r)LnI—((aj,a],l,T) + const (2.9)

would permit the formulation of the propagator for a

given set {| @)} in a manner analogous to Eq. (2. 6), but
not necessarily with the inherent classical significance.
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Using Eq. (2.9), we have the limiting expression

Kl@g, oy, ttg) = lLm A [do [da,:-- [day,
N0
(NT=t-t))

. N-1
i
X exp<ﬁ— >y TS(U],CYj+1,T))
j=0

:Afﬂ)(a)exp(% jtt S(ozo,a,otN,T)d-r> .
o

(2.10)
Assuming, for simplicity, that the Hamiltonian is not
time dependent, we adopt a complete set of orthogonal
states corresponding to some Hermitian operator (which
we will represent as an arbitrary part of the system
Hamiltonian). Let # = A, + H,, where
A ln) = E,|n) and (n'In) =6,, forallnandn’.
We emphasize that the choice of states {In)} (and there-
fore of ﬁl) is arbitrary and need not represent a large
part of the Hamiltonian H. We will further assume that
the parameter set {n} is discrete, since this simplifica-
tion does not substantially alter our results. The propa-
gator may be written in this representation as

Km,n',t —to) = ('l exp[— G/R)H, + H)(E — to)]In).
(2.11)

In the limit of small (f — tO) the exponential operator

may be factored into two parts, since the first correc-

tion to this factoring approximation is quadratic in
(¢ — to):

K(n,n',7) = (n'| exp[— (i/7) H,7]exp[—(i/k) H,7]In),
(2.12a)

K(@,n’,7) = exp[—(i/R) Ey 5 7]<0’| exp[(i/7) A 7] i),
(2.12p)

The ordering of the operators in Eq. (2.12) is clearly
arbitrary. The limiting form of K is independent of the
choice of ordering, of course, but the approximate form
for finite 7 differs with the ordering of the operators.
For instance, the approximation in Eq. (2. 12) can be
made exact to second order in 7, rather than first, by
symmetrically splitting the #, factor.

Define the matrix elements
[a(T)]g = 0’| exp[—(i/R)H ,7]In),

[é(T)]n',n = exP[— (i/n) El,n’ T][Q(T)]n 'n*

(2.13a)
(2.13b)

We may write Eq. (2. 8), in this representation, as a
matrix element of the Nth power of A:

N-1 _
K(noanN;t - to) = lm 22 2 I K(n.,n.d, ),
Ui n, n n i=0 7
Nooo 1 Ra N-1
WNT=t-ty) (2.14a)
_ i N
- %_Lng (4 (T)]”N-"o' (2. 14b)
N—o0
(NT:t—to)

In general, 4 is a matrix of infinite order, and as such
the matrix elements of the Nth power are understood
as the limit of the Nth power of a finite order matrix
as the order increases without bound. The 7 limit is
taken subsequent to this process. However, as we have
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our attention focussed on possible applications to nu-
merical computations, the precise definitions of the
limiting processes are of secondary importance here.

It is quite illustrative of the inherent simplicity of Eq.
(2. 14) to write the product in terms of the diagonalizing
transformation for A(f):

AN = S(S1AS)NS-1 = S A, S-1 (2.15)
where
Ay
Ay= 28 o
0 .
for {o } the eigenvalues of 4.
The matrix S may be represented as10
(S)y. = <n|m), (2.16)

where {Im)l are the eigenstates of the operator
xp[—(i/%)H 7] exp[—(i/fi)H,7). We may use this to re-
wrlte Eq.(2.15) as

(l_éN)n_m = lzl)fnﬁ) (AN)l,kﬂZl m).

The limiting expression (in which N » o, N7 = — o
are understood)

. N — - 3 cd N

1;11(}(_;_4 Dam ITLII(}?(nID(lln})\l (2.17)
is determined by the fact that

lim|m) = |m), (2.18)

where the {|m)} are the eigenstates of (4, + ,).
The final result is that

li (4, 00 = (o] (Z1D A expl— /M Ey [ m), .19

where ¢ = N7 and the {E, }are the eigenvalues of

@, + A,). Therefore, Eq (2. 14b) does lead us back to-
the simple propagator expression in terms of the eigen-
states of the full Hamiltonian (let £, = 0).

For finite values of T the matrix 4 is still unitary,a
property which yields a set of simple sum rules for
powers of A. Referring to Eq. (2.12), we define

33 E¥(m,n, N7) (m|y(t,) = i $OT +t,),
such that
Um [$OT + L) = W),

By the unitarity ofé,(@hw =1 and choosing |4/(TO)) =
|1), we obtain

D IENm,LNT)2 = AN, .12 =1. (2.20a)

Referring to the definitions in Eq. (2.13), it is obvious
that

a2 =1 (2. 20b)

A particularly useful form of the equations of motion of
a quantum system where the Hamiltonian is partitioned
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(as it is here) is the interaction representation. From

our point of view of taking vanishingly small time steps

to generate the full propagator, we go to an interaction

representation that involves only a trivial modification

of the equations. In the representation defined by the

Hamiltonian

lW; ()) = expl(i/n) A t]exp[—(/m)H, + H,) |1Vt = 0).
(2.21)

Therefore,

K,(n',n,7) = (n|exp[(i/n) A 7] exp[—(i/h) A7)

x exp[— (i/m) H,7]|n’).

Thus, the appropriate matrix replacing é(t) is simply
a(t), and we have

K (n',n,t —t,) = lrl_.n(% @¥ (™) n- (2.22)
The effect is simply to eliminate the phase factors asso-
ciated with the Hamiltonian #;. The sum rule in Eq.
(2. 20b) is clearly independent of the representation.

3. RELATION TO PERTURBATION THEORY

The approximate solution for a complex quantum system
is often obtained by some variant of perturbation theory
based on the solution to a simpler problem. In this light,
it is of interest to analyze the approximate solutions
contained in Eq. (2. 14) for finite values of 7 and N. We
address the problem of extracting the groups of terms
from Eq. (2. 14) corresponding to different orders of
standard perturbation theory for the case where FIZ is
such that the perturbation series converges. Following
this program, we find that for finite N and 7 the approxi-
mate equivalence of the two sides of Eq. (2. 14) leads to
approximate integration formulas for the multiple time
integrals of the first N orders of standard perturbation
theory. In the limit where Eq. (2. 14) becomes exact, the
expression extends to all orders of perturbation theory
as the integral approximations become exact,

We wish to group the terms inAEq.(Z. 14) in powers of
the “perturbing” Hamiltonian H,. The expression for
our comparison is the series form of the time evolution
operatorll

o0

Ut,ty) = Uyt ) + Z} Uexe,t ), (3.1a)
where
Ut t,) = exp[— (i/h')(t ~ to)H,]
Tt ty) = @R)™ [+ [dr,dr, - dr,04(t,t,)
X 007,57 ,00) o+ HyU(T5,t0),
E>T, > T, 1> >Ty >ty (3.1b)

The integration is over that part of n-dimensional space
satisfying the indicated time-ordering constraint. To
obtain all the mth order terms in H2 from Egq. (2.14), we
need only consider the first m terms in the H expansion
of the exponential form a(t). We have assumed here that
ﬁz is free of explicit time dependence. Then, for a jth
order expression, we use the terms

@My ® 5 1) wy) (3.2)
alr n’m*a=0 7/ al 2 2/n,m? :
with
@%)n.m = sz'Z.?' Koy <n|ﬁ2|k1>

X <kllgzlk2> . .(kq—1|ﬁ2| m).
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The jth order terms of A¥ are then obtained by extract-
ing them from the Nth power of A obtained from sub-
stituting the expression from Eq. (3. 2) for (a($)),, in
Eg. (2. 13b).

To illustrate this procedure, we will obtain the first few
orders while keeping in mind that this specific ordering
of the components of the evolution operator need not be
retained. The first order terms arise from the expres-
sion

{exp[— (/B Eyi,1[8,14

{where the operation of raising to the Nth power is
understood to apply to the matrix having the (n’,n) ele-
ments indicated in the brackets). The first order terms,
indicated by (n’|u@X¢,t,)In), are given by

—(i/ﬁ)THn,'n]}N

' la O t)in) = —i/litH, .,
x {exp[~(i/7) E,NT] + exp[— (i/R)E (N — 1)7]
X exp[—(i/R) E,T] + -+ - + exp[—(i/R) E,iT]

X exP[‘_(i/ﬁ) En(N - I)T]}1 (3.3)

where £, has been set equal to zero for simplicity.

In the limit as 7 — O(N — ©), the above expression is
indeed equivalent to Eq. (3. 1b) for n = 1:

~ . t
lim @' |a OO0 = — (/M) Hy, [ dry
Nt=t

X exp[—(i/B) Ey(t — 1)) exp[—(i/B) E, T,]. (3.4)
Equation (3. 3) clearly represents a trapezoidal rule
integral approximation to the limiting expression.
Furthermore, the abscissas defining the formula are
determined by the ordering in Eq.(2.12). For instance,
splitting the 171 term yields abscissas centered in each
time increment 7.

The expression in Eq. (3. 3) may also be directly sum-
med. Thus

' |u O, 0)|n) = — —H %}

X exp(—ﬁ [Ey (N —J4) + E J])

, ) N-1
i i
=~ Hy a7 exp <— pTEn't> j;))

X [exp <—- hé T(E, — En>:| j

; ; 1 — exp(—iw, .+ 1)

1 1 n.n
=—=TH . exp{— ~E_ . 3.5

BT p< rn ) {1 —exp(—iwy . 7T) » (8.5)

where w, . = (E, — E_,)/li. The equivalence of this
expression with the integral of Eq. (3. 4) in the limit
7 — 0 is thus established quite easily:

lim ' |a D) |n) = — %Hn.'nexp (— %En,t>
NT=t

1-— ~1 '
X{ efg(w" t)}- 3.6

The j sums in the general jth order expression may be
similarly calculated and shown to reduce to the appro-
priate integral expressions. In Appendix B we calculate
the second order expressions of Eq.{(3.8). The second
order terms are obtained from
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i i 1/i\2
|:exp (— ﬁ—Eu.T> <6n,.n —5THy, * 5(}?) T2 ZBH“"IHL“ﬂ N
3.7

In this case there are two classes of terms contributing
fo the entire second order—those stemming from the
second and third terms of Eq. (3. 7), respectively. Thus,

—~ 3 2
(n]Z @N7)|n) = <_ ﬁi> T2 flJ‘I:In,,lHl_n

N-2 .
x5 0 exp(—%E,,.(N—l —k)r)

k=0 m=0

X exp <— %El(k —m + 1)7) exp <— ﬁiEnrrn')
i\2 r2
+ (— ﬁ) = Zl) H,H,
gine i ) i o
X 7 exp —hTEn.(N —kYT) exp ~—ﬁEnk 7). (3.8)
¥-0

The weighting of these sets of terms by 72 and 72/2
reflects their geometric significance as components of a
two-dimensional integral approximation. In Fig.1 the
appropriate square grid for N = 4 is shown with the
abscissas for the second set of terms indicated by open
circles, and their integration regions are shaded.

The situation is much the same for the third order
terms, with a single exception. The extremal terms,
those satisfying the time ordermg constraint in the limit
of simultaneity (Tl STy =Tg T =T ), are weighted
by a factor that is less than that expected from direct
application of a trapezoidal rule: the geometric value of
the integration region is 73 /4 instead of 73/6. Inspec-
tion of Eq.(3.2) indicates that all the extremal terms
for third order and above will be weighted in a similar
fashion. The ratio of the geometric to the actual weight-
ing factors is seen to be n!/27-1 for the nth order extre-
mal terms. As N becomes large, however, the approxi-
mate expressions approach the exact limit as a trape-
zoidal rule since the number of extremal terms is less

4 | T |
3
2 AN —
!
£ |
I
|
|
] |
| !
' |
| |
I |
|
[1/]e [ ® [ J
0 1 2 3 4
(k + ]) —_—
FIG.1. N = 4 grid for integration domain of second order terms. The

dots and circles indicate the abscissas of the first and second sets of

terms of Eq. (3. 8), respectively.
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than the total number of terms by a factor that is pro-
portional to 1/N.

Thus for finite T and N the procedure defined by Eq.

(2. 14) is related to the perturbation series in an interest-
ing way. It sums approximately all orders of perturba-
tion theory where we may characterize the approxima-
tion by a trapezoidal-like integration rule.

For a given value of N, those orders of perturbation
theory greater than N are represented by a single term
each. These are the terms remaining after we have
identified the above mentioned integral approximations
for the first N orders of perturbation theory and are
therefore of little significance to the approximation for
reasonably large values of N,

4. EXCHANGE SYMMETRIES

The system states considered so far are completely
general and therefore implicitly include proper permu-
tation symmetries for many-particle systems. However,
when faced with the problem of reducing the above con-
siderations to a form amenable to actual computation,
the retention of fully permuted states can be quite pon-
derous. The full consideration of exchange requires
that we use a total propagator that is effectively the

sum of propagators in single particle quantum numbers
(or coordinates); each of the terms in the sum being
characteristic of one possible permutation of the single
particles. The advantage of the present approach in
dealing with this complexity is that for small 7 we need
only consider fwo-particle exchange, because the ensuing
sequence of two-particle exchanges will generate any
possible exchange.® This contention is quite intuitive
but demands a more detailed analysis that is partially
provided in Appendix A.

If K(m,n',t) is a many-particle propagator, written with-
out exchange symmetry, we may express the full pro-
pagator (using the results of Appendix A) by the relation

D I'IA(liZ}P)

ny.?

X R’(nj ,

KE(novnN’NT) = %_1_{8 nZ> ter

n,,,7)  (4.1)

where A is a normalization constant, P is the two-
particle permutation operator acting over all M ex-
changes [M = L(L — 1)/2 if all L particles are identical],
and the + sign indicates Bose or Fermi statistics.

In terms of the matrices in Eq. (2.13), Eq. (4. 1) be-
comes, for L particles,

Ken,n',7) = (1 + Z}P) exp<

3
x<n’. exp< %A >{n]}>

Define the new exchanged matrix

, M
[‘-‘E(T)](u]!} Ang) = <{I\;}' exp <— %H{f) A (1 £y, P) ’{“,- }>,
(4.3)

and we may cast the exchanged propagator into a form
identical to Eq. (2. 14).
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Thus,
KE({DJ- }! {l’l} }) t) = ];_LII(} (éfi‘](-r))(nj') ,{nj) 4 (4 4a)
where
(éE(T){n]!} Ao} = = exp <_ o E E, 'T> (aE(T)){n'} {o;}
(4. 4b)

The crux of the calculation of a fully exchanged pro-
pagator is therefore the determination of a,(t), a small-
time, two-particle exchanged matrix.

5. IMAGINARY TIME

From the form of the equation

Ay @) = in 5 N/(t» (5.1)

in the Schriddinger picture, we can replace the quantity
(it) by the imaginary time coordinate € to obtain a diffu-
sion type equation.

By using the eigenstates of A4,{|1)}, the evolution opera-
tor for Eq. (5.1) is

0tt,t) = 5 exv(~ FE(t — ) 1T (I]. (5.2)

Then the propagator, in the representation of eigenstates
of H,, along the imaginary time coordinate becomes

K/n,n',€) =IZ) exp[—(e/F) E,} (’{1)(1|m). (5.3)

As (t —t;) becomes sufficiently large, we recognize
that the ground state of the system emerges as a diago-
nal element of K;:

lim K, (1,0, €) = exp[—(/7)E,] lZ) |@li2.  (5.4)

Therefore, the ground state energy of the system is
given by

EO = —-(ﬁ/G) %})lgg ln[KI(n) n, e + t)/K_[(n, n, t)]- (5- 5)
It has been pointed out befores.-6 that, by restricting the
symmetry of the propagator, the results of Egs. (5. 4)

and (5. 5) may be obtained within each such restricted
symmetry class.

APPENDIX A

The proposed method could be used to great advantage
if we need consider only fwo-particle exchange in an
N-particle propagator. To do this, we require that two-
particle exchange generates, after a large number of
time steps, not only all possible permutations, but gene-
rates them in equal numbers so that the final propaga-
tor is correctly symmetrized. If Pij indicates the two-
particle exchange operator, we may state the theorem
to be proved in the form

N L
lim <1 + Z}PU> ~230P, (A1)
n

i<y

where {Pn} is the full symmetric group of order N and
5(#) carries the appropriate algebraic sign. For N = 2,
Eq. (Al) is true since

(1 + Plz)z = 2(1 + ﬁ12)'

For N = 3, the problem is already much more compli-
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cated. We will carry out a direct proof for N = 3 (since
this is an important case) and then merely indicate a
proof for the general case.

There are six possible permutations for N = 3 and
three permutation classes:
p (12 3>
13 \321/)

(123 p f123
‘\123/) 12°\213)
123 123 123
Py , C: , c2: .
132 312 231

Using the decomposition of the operators C and C2,

~

C=P12[33:13 31312:13231313’
C2=P 23P 2—P12P 3 =F13Ps3, (A2)

we take the powers of [1 + (P, + P 5 + P,,)] and
designate the coefficients of the three permutation clas-
ses as follows: A for the identity, B for {P t, and C for
{C,C2}. At this point we may simplify subsequent
manipulations by absorbmg the + sign into the definition
of the exchange operator P,.. Since the parity of a per-
mutation is determined by {he number of exchange fac-
tors into which it decomposes, this measure eliminates
the need for the 6{* in Eq. (A1), The recursion relations
for these coefficients (where »n indicates the power in-
volved) are

A,=A,, +3B,_,, (A3a)
B,=B,, +A,, +2C,_, (A3b)
c,=C,, +3B,,, (A3c)

withA; =B, =1, C; = 0 as initial conditions. The
equation may be simplified by eliminating C,_,, using

the first and third equations to obtain C, =A, — 1. Then
we have

B,=B,, +34,,—2. (Ad)
In matrix form{with A, = (4,,B,), M=[}$]andy =
(0, 2)}, Egs. (A3a) and (A4) become

An IM.An—l -7 (A5)
Iterating this relation gives

An :Mn-l 'Al — E Mn=i.o, (AB)

=27

Our theorem is proved if lim, ~ (1, 1), which is
the case [by Eq. (A6)] if hmn_,co M" ~[11%]. That this is
true can be shown as follows:

13| 510 011n = /m\  [o1}:
[31} '1[01}3[10]5 ‘§o<i>3 LO]’
and since
o)
; , i even
01’_ 01
[10]' [01] ’
, i odd
10
[13]n_an3n
31 _Bnan'
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where
[n]ze;ven n {n]odd n
o = 324, = 3 32iel,
" 2i=o <2z> & 2%11=1 (21‘ +1
(AT)

Now since we have the relations

o, +8,=(1+3)=4 (A8a)
and

a —B,=(1—=3)7=—2", (A8b)

we combine them and take the limit:
lim [(o, — B,)/(@, + B,)] = lim (~1/2) = 0. (A9)

Thus, the theorem is seen to be true for N = 3.

For the general case, we find it useful to label the per-
mutatlon operations {P } and the coefficients for these
. Now consider the operator

(1 > P) ~ 3 a, 6P, (A10)

i<j

and further restrict the {a,} so that 2;, a, = constant.
This is simply a choice of normalization that somewhat
simplifies the following. Consider the product

<1 + Z} P) (Z) anﬁn 5,§¢)> =2a,08P, (A11)

i<j n

which results at each time step. Since the coefficients
are assumed positive [the signs of the terms in Eq.
(A10) determined by the parity of the permutations], we
may write the change mf .} as follows:

n

AanEa;—anzzaj—%N(N~l)an, (A12)
Jj

where the sum is over the set of operators connected

to P, by single pair exchanges. We may also decompose

the above expression into the parts due to each pair

exchange. If P takes P, into P, then P also takes P,

into P, since (P )2 =1. Therefore we have

an
Aa, = 4;‘, Aa,,
where

Aa =a,—a,.

It is clear at this point that one steady state solution is
in fact the desired one: where a, = q, for all £ and !

(= N!). It is also clear that any difference between two
coefficients results in a change that tends to eliminate
the difference.

This is far from being a complete proof, but it is a
strong argument for the existence of such a proof.

Note added in proof:

There exists a theorem, similar to (A1), which decom-
poses the sum }; 6® P into a finite number of two
particle exchange factors The factorization

A N1 yoo
nE G’Ei)P":z‘I—*—[l <1 * Pi])

differs substantially from (Al), however, in that the
factors are not identical and theréfore may not be en-
corporated into the expression for the propagator as
the Nth power of a matrix operator,



530 Galas, Jensen, and Sahlin: A computable expansion for multiparticle propagators 530

APPENDIX B

The second order finite time step expression for the
evolution matrix, given by Eq. (3. 8), may be reduced to
a much simpler expression by carrying out the indi-
cated summations. Thus,

- i\ 2
'l w@(t)|n) = (—' %) 72 El_‘l Hyo Hy

N-2 k

x >, 2y exp(—%En.(N—l—k)T
k=0 m=0

] i
— %—El(k —m + )7 —-ﬁ'rEnm>
N-1

i\2 72
*(08) T D Aatna 2,

X exp <—— %En,(N —m)T — %Enm‘t') . (B1)
Performing the sum over m, we obtain
@ lu @) n) = <—-—i—>ZZ}H H,_ ex (—iE t)
- 71 T n’,1**1n p i Tn'
N-2
X | 25 72 exp[— iw, o (k + 1)]
k=0 '
N <1 — exp[— iw, 7k + 1)])
1 — exp(— iw, 17)
72 f1 — exp(— iw_ .NT
+_( Pty n VT | (B2)
2 \ 1 —exp(—iw, ,7)

Summing again,

N2 <exp[— w7k + 1] — exp[—ilw, 5 + wy )k + 1)7)

2

k=0 1 — exp(— iwn'lT)

— exp[— iwy (N — 1)-r]>
1 — exp(— iwlln.‘r)

= [1 — exp(—iw, ,7)]? [(l

1 — exp[— iw, o (N — 1)T]>

X exp(— iw,y s 7) — ( Qe —
n.n’

exp(— iwn’n.‘r)] . (B3)
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The final closed expression becomes

1

» <exp(— iw) 0o 7) — exp(— iw, 4t

1 — exp(— iwy 01 T)

1 — exp(— iwnle)

exp(— iw, /7)) — exp(— iw, ,:t)
1 — exp(— iwn’n.‘r)

T2 i 1 — exp(— iw, ;)
+ —exp(— ~E,, ' )
2 p( ke > <1 — exp(— iwy o 7)

If we now take the 7 — 0 limit, the final term vanishes
and we have

~ N2 . Hyo H
lim @ |d@() n) = + (&) 3 2 1le
70 ﬁ ; (.Un N
Nt=t¢t s
y (exp[— (/) By t][1 — exp(— iw) o 8)]
wl,n,

__exp[—(i/h) B, t][1 — exp(— iwn,n,t)]>

(B4)

(B5)

wn’n.

which is the value of the second order integral as ex-
pected. Higher orders are quite clearly obtained by the
same procedures.
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Many perturbation series solutions to stochastic differential equations suffer from secularity; that is,
individual terms in the series behave as some power of an independent variable, and thus diverge as
that variable goes to infinity. We derive a method of renormalizing the “free” or “‘unperturbed”
Green's function by summing a certain class of terms and including them in the Green’s function.
The terms included in this class correspond to Markovian interaction with the stochastic field. The
remainder of the perturbation series corresponds to non-Markovian corrections. We give a
diagrammatic interpretation of the individual terms in the perturbation series. We may solve, under
certain assumptions, the explicit form of the Markovian Green’s function. We apply this method to
plasma turbulence, and show that it produces Dupree’s theory of turbulence. We derive the
condition for validity of the perturbation expansion, which is that particles are not “trapped” by the

turbulent waves.

1. INTRODUCTION

The study of plasma turbulence is a subset of the general
study of stochastic differential equations. Several
plasma turbulence theories depend on methods of de-
fining suitable perturbation expansions. Recently, we
proposed a simple statistical model,! which reproduced
the results of Dupree? and Weinstock.3 We wish to show
here the relationship between the somewhat heuristic
methods we used, and classical methods of solving
stochastic differential equations. In particular,we will
derive a Green's function for the Vlasov equation which
leads to a nonsecular perturbation series. Assuming a
Markovian process, we will derive the explicit form of
the Green's function.

We consider first a stochastic differential equation of
the form

Lf=0 (1.1)
where L is a stochastic operator, and f, the random field
quantity,is an element of an infinite dimension vector
space H. The averaging operator A is a projection
operator onto the space AH. L is composed of two
parts: the averaged or “unperturbed” component L,
AL, and the stochastic or “interaction” component L’
(I — A)L,where [ is the identity operator.

The equations for the average part of f,f = Af,and the
stochastic part, f’ = (I — A)f,are

Lof + AL'f’ =0,
Lof' =(@A—~1L'f" —L'f

Neglecting initial value terms, the formal solution to
Eq.(1.3) is

(1.2)
(1.3)

fr= z_“,l [LglA — D)L']*f. (1.4)
Therefore, Eq. (1. 2) becomes
{L,+ AL 5 [LgiA — L)L']"}f = 0. (1.5)
n=1

Eq. (1.5) is called a master equation for f. Note that it
is in the form

(Lo —M)f =0. (1.6)
M is called the mass operator. The Green's function
for Eq.(1.6) is
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G = Ljl + LglMG. (1.7

Eq.(1.7) is the Dyson equation.4

The difficulty with classical perturbation equations of
the form of Eq. (1. 5) is that the individual terms are
secular—that is, if L, = 9/9¢ + (v)3/9R, for example, they
behave as some power of { and thus diverge for large ¢ .
The entire series may converge, but any finite sum of
terms may diverge.

To avoid the secularity problem, one attempts partial
summation of the perturbation series. Two methods of
doing this are the method of smoothing,4 and of re-
normalization.5 A recent paper by Besieris®é found
stochastic master equations of the form of Eq. (1. 6).

The problem with his formulation, shared with many
other formulations, is that the resultant Green's function
is expressed as a series propagated by the “free”
Green's function, Lg!. In this case,as we attempt to
evaluate terms in the series, secular terms again appear.

To see this, we sketch out an argument given in more
detail by Frisch.4 The basic assumptions are that the
medium is homogeneous and the process is stationary.
In this case the poles of the Fourier transform of Lj?!
are real. When the ensemble average is taken and the
transform inverted, we have contributions from terms
like (S — w;)~%,n > 2, where S is the integration vari-
able and w; is the ith pole of Ljl. Evaluating the con-
tribution of this pole by residues, we obtain factors like
(I/nl)in exp(iw t),giving rise to secularity.

To renormalize the Green's function, we introduce a
damping term,i.e.,an imaginary contribution to the pole
of the Green's function operator G. This damping term
will limit the magnitude of the terms in the perturbation
series as { increases.

The object of this paper is to give a prescription for
defining a “perturbed” Green's function which has a
well-defined physical meaning; it applies to the case in
which the random function f is undergoing a Markov
process. We shall show in diagrammatic terms exactly
what terms are lumped into the Green's function, and
what are left in the remaining perturbation series. We
can evaluate the Green's function self-consistently under
certain approximations.

2. THE PERTURBED GREEN’'S FUNCTION

To both sides of Eq.(1.3) we add a perturbation opera-
tor, pf’:

(Lo + p)f'=pf"+ A —1)L'f'— L'F. (2.1)

Copyright © 1973 by the American Institute of Physics 531
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The idea is to use pf’ to subtract a certain subset of
terms in the perturbation series. The Green's function
we use to generate the series is defined in terms of p:
G=(Ly+p)t. (2.2)
We could immediately terminate the series by defining

pf’'=— (A — 1)L'f’. Unfortunately, Eq.(2.2) becomes
more difficult to solve for than the full operator L’.

Instead, we shall iterate the right hand side of Eq.(2.1)
using G:

(Lo + p)f’

=pf’ + (A— 1)L'G[pf’' + (A— 1)L'f’ — L'f]— L'f.
(2.3)

We shall use pf’ to cancel all or part of the underlined
term in Eq. (2. 3). At this point, we can take two paths.

If we cancel all of the underlined term, G becomes a
stochastic operator. We then have a simple perturbation
series, but we will not be able to evaluate G. In the
second case,we use p to cancel only the nonstochastic
part of the operator L'G(A — 1)L’. Then G is a non-
stochastic operator which we may find exactly.

We anticipate that a nonstochastic G will in general be
easier to handle in calculations, since the averaging, for
example, does not need to include correlations between
L’ and G. More importantly, the nonstochastic Green's
function can be considered the probability distribution
function for trajectories in phase space, and thus may
be used to propagate both f’ and f forward in time.

A. Stochastic Green's function

We consider the first case, and denote this by the sub-
script 1.

pf =—(A—1)L'G (A —1)L7f". (2.4)

Therefore, Eq. (2.1) becomes
(Lo +p )’ =—(A—1DL'G(A —1)L'G{(A—1)Lf’
4+ (A—1)L'G,(A—1)L'f + (A—1)L'f, (2.5)

where we have used the relation AL'f = 0. We have
neglected initial conditions for f’, but they may be kept
with only a little added complexity.

Defining K = G(A — 1)L’, the solution for f’ is

fr= 5 (— K3)»(K2 + K)f, (2.63)
n =0

= 5 (1 — K)nKn*lf, (2. 6b)
n =0

The reduction from Eq. (2. 6a) to Eq. (2. 6b) is accom-
plished using trivial operator identities.

Let us compare the diagram expansions of Egs. (1. 4)
and (2. 6) using the following conventions. L’ is a
vertex, represented by a dot: “-”. Ll is represented
by a straight line. Any perturbed operator, G, is repre-
sented by a wavy line “~wwv .” If two quantities are en-
semble averaged, we draw a dotted line between them;
e.g.,

AL'LFL = £ .

The factors of (A — 1) mean that, when the final averag-
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ing is completed, we cannot have an unconnected dia-
gram;that is, one that a cut can be made through bet-
ween vertices without touching a dotted line. An example
of a connected diagram is

An example of an unconnected diagram is

P -

We shall not retain the factors of (A — 1), but simply
remember that, when the final averaging is done, un-
connected diagrams are forbidden.

Then the diagram expansion for Eq.(1.4) is

frm e[ et s
—————a—a + ---]F. (2.7
While the diagram expansion for Eq. (2. 6) is
I =— [ mAe— araenane T AMASMARAANANS
— AMAARAMAARNAAAAAAAS + 17 (2.8)

Note that the terms with 3n vertices are missing. They
have been absorbed into the Green's function. The per-
turbation expansion shown in Eq. (2. 8) appears simple,
but averaging it is difficult, since G is stochastic.

The diagram form for the Green's function equation is

MA = —— + AN

(2.9)

B. Nonstochastic Green's function

Now we take the next approach to defining the Green's
function. If we consider the stochastic differential Eq.
(1.1) as defining the evolution of the function f in the
phase space of independent variables, then the Green's
function is a trajectory operator. The average Green's
function then takes on the character of a probability
distribution function for quantities defined along the
statistical trajectories.

In order that the Green's function equation is the same
as the Kolmogorov equation for the probability distribu-
tion function, we define

pof =— (LG, L) f, (2.10)
where (L'G,L") = AL'G,L" = énna . Eq.(2.1) becomes
(Lo + p)f" = [(A — 1)L —(L'G,L)]f' — L'f, (2.11)
with the solution

= 5 {G,(A — 1)L" — Go{L'G, L")}"G (A — 1)L'F.
n=0 (2.12)

We now substitute Eq. (2.12) into Eq. (1. 2) to obtain

[Ly— (L'GoLN]f = ZAL{G(A — 1)L' — Go(L' Gy L' )}*

n=1
X GzL’)f. (2.13)
The solution to Eq. (2.13) is
_ _ o0
F=Gyfo+ Gy 20
n=1
(L'G3(A — 1)L’ — Go(L'G,LN}"G,L")f, (2.14)
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where f-o is the given initial condition. Eq.(2.14) appears
complex, but has a simple diagram representation.

Let us neglect triple and higher order correlations;that
is, we apply the random phase approximation. This is
consistent with our basic assumption of Markov inter-
actions. Eq.(2.14) becomes

i ~.
7 N o~
7 \ /

- =~ PRt
’ >3 N .

— - 7/ II \‘ N
f:MNf0+[vw + ard

\
N
N !

(2.15)

The rules for this diagram expansion are that (1) every
dotted line must connect two vertices; (2) no unconnected
diagrams are permitted; (3) all lines must cross.

The equation for G, is

AV = — 4 —dAAANAA,

(2.16)
With the formal expansion,
AN = — + & + P P
+ e g
+ D U A P (2 17)
T AN N N
------------ \\\
e
+ v ../4"\\ RN

Firsch4 calls Eq. (2. 16) the Kraichnan equation. Kraich-
nan derived it as a complete Green's function to a
“model” problem,i.e., one whose stochastic dynamics is
modeled by the theoretician in such a way as to produce
an exactly solvable problem, but whose relationship to
physical reality may not be clear.? Here we have de-
veloped the Kraichnan Green's function as an incomplete
Green's function for the physical system, and have ex~
plicitly shown the resulting perturbation series.

Compare Eq. (2.17) with the equivalent expansion for the
first order smoothed Green's function:

A = —— + —E A
- — 4 PN + Fa FaY
D TP A T)

It is clear that Eq.(2.17) for G, contains many more
terms than does Eq. (2.18). In particular, it contains all
diagrams with two-vertex clusters and no crossing of

lines. Note that the diagrams for G, may be unconnected.

It is tempting to ascribe physical content to the indivi-
dual terms of the perturbation series. As pure con-
jecture—but perhaps a useful one—we suppose that terms
of the form

represent events occuring at different times and differ-
ent places. We call these sequentially unconnected dia-
grams. In turn, a diagram such as

PR G

corresponds to interactions with the stochastic field at

J. Math. Phys., Vol. 14, No. 4, April 1973

either different times at the same place, or different
places at the same time. Both sorts of events are in-
cluded because of the diffusive nature of the trajectory.
We call these nested diagvams. Finally, interactions of a
particle with the stochastic field at the same time and
same place have the form

—_—

These give rise to non-Markovian corrections to the par-
ticle trajectory. These are crossed diagrams.

This classification points to an interesting interpretation
of Egs.(2.17) and (2.18). Both Green's functions contain
all sequentially unconnected diagrams. All nested diag-
rams appear in Eq. (2.17), however, indicating that all
Markovian interactions are present, and indeed, this
Green's function does correspond to the propagator
derived from the statistical view. The Green's function
of Eq.(2.18) in some sense corresponds to a truncated
picture of the Markovian process. It resolves the se-
cularity difficulty, but the precise physical process it
describes is not clear.

3. APPLICATION TO THE VLASOV EQUATION

The rest of this paper will apply specifically to problems
of plasma turbulence, which essentially involves coupled
solutions of the Vlasov equation

a 0 a
— +v—+gqg/mE-—])f =0 3.1
(at 3R @ av)f (3:-1)
and Poisson's equation
V-E = (4ng/c) [ dof. (3.2)

We shall not consider in detail the solution to Poisson's
equation; rather, we assume that the turbulent spectrum

is known and that we are interested in the time evolution
of f. For simplicity of analysis, we let AE = 0 and only

consider one dimension.

The suggestion to use a perturbed operator was made by
Dupree.2 According to the formalism of this paper.

0 0

)
=— L' =q/mE’'—,
5 q/

L v—

0 3R’ v
It the turbulence spectrum is very broad, the auto-
correlation time of the fields is very short. In this case
the term éan» becomes

9 a d ]
2/m2) —(E'GE’)) — = —D —, 3.3
@%/ ov % v v odv ( )

with D a function (the diffusion coefficient) rather than
an operator. The equation for the Green's function (2.16)
can be written

(ait + ”585 - aa_v D %) g (Rut/Ryot,) = 0,
g(Rvty/Ryvpty) = 8(R — Ry)d(v — vg),
where
D= (qz/mz)f,: al'rfdli‘’dv’(E(R,t)g(th/R'v’'r)E(R’,‘r)i‘:3 5

We cannot solve Eq. (3. 4) for arbitrary D(v), but in the
special case that D(v) ~ const., it can be solved. This is

(3.4)
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again a restraint on the broad banded nature of the tur-
bulent spectrum (see Ref. 8 for a more detailed discus-
sion). In this case?

exp [— (v — v)2/4DT]

J4r DT

g(Rut/Ryvpty) =

» €XP [- ® —Ry— 3(v + vy)1)2/1/3D73],

JsnD7T3

where 7 =t — 4. Substituting Eq. (3. 6) into Eq. (3. 5),
we obtain Dupree's result

t=1,
kw ku))f 0

% exp[i (w — kv)T — $k2D73),

(3.6)

dkdw
(2m)2

D = (q2/m?)

(3.7
Note the damping term — $k2D73 in the exponential. The
unperturbed operator gives an analogous integral in the
perturbation expansion:

fOHod‘r exp[i(w — kv)T].

One source of secularity is derived from the action of
the 3/dv operator on this integral:

zkf

However, the damping term derived here keeps the in-
tegral bounded as ! goes to infinity. The other source of
secularity is repeated integrations over time, such as

9 rtto ,
3 fo dr explilw — kv)T] = 'rd‘r exp[i(w — ko)T].
v

¢ . tl .
fo dt, expli(w — kv)tl]f0 dt, expli(w — ko)t,],

which arise whenever one calculates correlated quanti-
ties. The damping term likewise removes this source
of secularity.

The requirement that this perturbation series converge
is seen to be4

2o <, (3.8)
ov 2
where | - ||, is the norm in the space of square integrable
functions. This requirement may be written
dkdo 50 5
S wa(Rmc? () <1, (3.9)
where
wg2(k) = (qk/m)}E} E, )5,
Tac2(k) = fow‘rd'rexpi[(w — kv)yT — 3k2D73].

Tac is a measure of the autocorrelation time of the kth
mode. wg(k) is called the bounce frequency, since a
particle trapped in the potential trough of an electric
wave E, will oscillate at this frequency.

Thus Eq. (3.9) means that no particle is trapped. The
Green's function equation is diffusive,and we expect it
to approximate the average nature of the particle trajec-
tories. If a particle is trapped by a wave, obviously its
trajectory will not be diffusive. Thus, the convergence
criterion agrees with our heuristic expectations.

We have also derived Eqgs. (3. 6) and (3. 7) purely on the
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basis of finding the joint probability distribution function
in R and v for a test particle undergoing a Markovian
interaction with external fields (see Refs.1 and 8). The
equivalence of the two operators justifies terming the
Green's function given in Eq. (3.6) a Markovian propaga-
tor. Note that the signature of such a propagator is the
absence of all diagrams with crossings.

We may use the propagator we have found to evaluate
Poisson's equation and give the dielectric response.
This will appear in a later paper.

4. DIFFUSION COEFFICIENT

We would like to make a final comment on the subject of
evaluation of Eq. (3. 7) for D, the diffusion coefficient.
The usual suggestlon 1s solut1on by iteration, taking as
the first guess D, =/ 7 ;i.e.,the diffusion coefficient
obtained from quasilinear theory, and also that used in
the first order smoothing approximation. The question
we wish to resolve is whether the diffusion coefficient
of Eq. (3.7) actually results from such an iterative pro-
cedure.

First we obtain a formal solution to the Kraichnan equa-
tion in the form of a continued fraction of operators.4
Denoting by £ the linear operator
£[G] = (L'GL").
We can write G as (Eq. (2.16))
G =L + L3*L[G]G
={1 — Lj1&[G]}"1L3!

and iterate to obtain

=1
L; -

1 Lge |20 T opz
Y [I*LBI"G |:1_0_

(4.1)

For the first iteration for D, we guess
Dy = £[Lj*].
The propagator corresponding to this approximation is
Gy = Lg* + Lg'L[L5']G,
= {1 — Lg*e[L5 ;" Lt
The next iteration for D is
D, = £[G4],
with the next order propagator
Gy ={1— 11116,
= _Let L-1
1—-Ljle [_2___
1- °B[L01]
As we continue the iteration, it is seen that we are con-

structing the continued fraction expansion of Eq. (4.1).
Thus, the iteration will converge to D,and G, =G.

LA12[G
el (4.2)

5. CONCLUSION

We have tried to indicate the connection between
Dupree's theory of plasma turbulence using a perturbed
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Green's function, and classic methods of solving stoch-
astic differential equations by perturbation expansions.
In particular, we have rigorously derived the perturba-
tion series obtained with the Kraichnan Green's function
and shown that the resummation of the series involves
grouping all diagrams with no line crossings into the
Green's function.

We then solved the self consistent equation for the
Green's function under the basic assumption of suffi-
ciently broad band turbulence. To our knowledge, this is
the only exact solution so far given for such a generali-
zed Green's function.1© Our solution only applies to a
special class of problems, but the basic resuits (pre-
viously derived by Dupree and his co-workers) seem to
have been verified in several experimental investiga-
tions.11,12,13,14 This particular solution may serve as
a starting point to investigate more general solutions.
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APPENDIX

In this appendix, we compare our analysis with that of
Weinstock.15,16 He obtains formal results for 7 and the
self-consistent field E through the use of a Green's
function that incorporates the averaging operation. In
his notation Ly = 3/3¢t + L. Our Eq.(2.1) becomes

<a% + IT+P)f’=1>f’+ (A —1Lf — L'f. (A1)

Rather than iterating for f’ at this stage,we define p so
as to cancel the term on the right hand side that contains
fr

pfr =—(A—-1)Lf".

The Green's function satisfies

<§; + D +q —A)L’) G, =0, (A2)
with the solution
G, = Lzl — L3 (1 —A)L'G,
oo (A3)
= 25 [LglA — 1)L']*Lgt.
n=0
The solution for f’ is thus
fr== AL,f
o0
=— Z}O[Lal(A —1DL'I"Lg1L'f, (A4)
n=

which is identical to Eq. (1.4). Weinstock's Green's
function is not exactly the same as G,, however. Using
the fact that AL’f=0 and ALf’ = 0, we can write Eq.
(A.1) as

(% +1—AL + P)f’ =pf'+ (A —1)L'f" + (A—1)LF.
(AD)

Making the same definition for p,the Green's function
equation becomes
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(a% + (1 —A)L + L’)) U, = 0. (A6)
This defines Weinstock's Green’s function, U,. The solu-
tion to this equation is
o
Ug= 2, [L31LA + Lg1(A — 1)L']*Lgl.
n=0
It is clear that U, ¥ G,. However, its action on L'f is the
same, as can be seen by direct calculation. Therefore,

(A7)

f'(t)=— UAL’]—r
= 5 [L31LA + Lgi(A — 1)L'*Lg1L'f
n=0°° (A7’)
=— 7, [Lal(A — l)L’]”L(‘)lL’f
n=0
= — GAL'f.

Weinstock also includes the initial conditions in the solu-
tion for f’, which is not a difficult step. We did not in-
clude them for several reasons: first, we wished to de-
monstrate in the clearest manner the diagram expansion,
eliminating extraneous details. Second, most calcula-
tions done with this method apply to time scales long
enough so that the effects of initial conditions are for-
gotten. For an example of the opposite situation, see
Ref. 9.

We have demonstrated that Weinstock's U, is a complete
Green's function for the problem. However, it is too
complicated to solve exactly, and must be expanded in
terms of simpler operators. If the unperturbed operator
is used, we are back to the results of ordinary perturba-
tion theory. However, Weinstock makes an expansion in
terms of U, the average Vlasov operator, which, to first
order in E2 equals our Green's function (2. 16). Thus,
in the limit of weak turbulence, his result approaches
ours (and Dupree's). The congruence of his theory and
Dupree’s in this limit was demonstrated in Ref.15. A
point we emphasize is that the solution using the U,
operator is a formal result. It appears that application
to real systems demands a way of expressing the full
U, operator in a meaningful manner,i.e., one which
makes further calculation possible. We suggest that
the Green's function derived in the body of this paper
is the proper vehicle for the expansion, which becomes
(neglecting the term LA, which produces no results),
o0
U, = Z}O[G(A — 1)L’ — G{L'GL")]*G. (A8)
n=

Substituting (A. 8) into (A.7), we obtain our previous
result, Eq. (2.12).
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Two expansions are discussed for the solution of the Thomas—Fermi equation for a degenerate
electron gas at high density. In the first case, the boundary conditions appropriate to the Wigner-
Seitz sphere are imposed, and terms up to fourth order are calculated explicitly to show the appear-
ance of a logarithmic singularity in the density. This singularity accounts for the divergence difficul-
ties in higher order encountered by previous authors, who assumed the existence of a power series
expansion’in the density. In the second case, we apply the boundary conditions appropriate to elec-
tron screening of an ion in a neutral plasma at high density, and an expansion is obtained which
gives the nonlinear corrections to the Debye-Hiickel approximation.

INTRODUCTION

The Thomas—Fermil:2 approximation for a degenerate
electron gas has been applied extensively to obtain
properties of atoms and nuclei.3 Since the Thomas—
Fermi differential equation is non-linear, solutions have
generally been obtained by numerical methods. However,
in the case of matter at high densities, it is possible to
obtain an analytic solution as an expansion in the den-
sity. Several authors4:5.6 have assumed that this ex-
pansion is a power series in the cube root of the elec-
tron density, but they have encountered divergence dif -
ficulties in computing higher order terms. In this paper,
we discuss expansions corresponding to two different
boundary conditions of physical interest. In the first
case,to obtain the equation of state,the boundary condi-
tion is that the average number of electrons inside the
Wigner —Seitz sphere? equal the charge Z of the ion at
the center. In the second case,to obtain the electron
screening of an ion in a neutral plasma,the boundary
condition is that the electron density asymptotically
approach a constant. In both cases, we find that the ex-
pansions of the solution of the Thomas-Fermi equation
contain terms which are logarithmic in the density, and
the lowest-order contributions are explicitly calculated.

1. WIGNER-SEITZ BOUNDARY CONDITION

The Thomas-Fermi equation!:2 for an electron gas in
the presence of an ion of charge 7 is

a2y _ M’ (1.1)
dx2  x1/2

where x is the distance from the ion in units of 7 =

ao(31/4)2/3/271/3 = 0.885 34 a,/Z1/3, a, = h2/me? is

the Bohr radius, and {/(x) determines the Coulomb poten-

tial (Ze/I)[y/(x)/x] and the electron density (Z/4n13)

[W(x)/x]3/2, The boundary conditions at the origin and

at the surface of the Wigner—Seitz sphere? are

dy(xo)

and x
0 dx,

¥(0) =1 =¥(xo), (1.2)

where x is then the radius of a sphere containing Z
electrons or,alternatively, the radius at which the elec-
tric field of the electrons cancels the field of the ion.
Hence,the mean density of n, of electrons is

ng = 3Z/4ml3x,3. (1.3)
We discuss now an analytic expansion of ¥ for high elec-
tron density, which is defined by the condition x, < 1.

It is tempting to use x, as the small parameter for a
power series expansion of {/,as has been done by sev-
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eral authors,4:5:6 but this procedure is incorrect in
higher orders,as we shall show below. On physical
grounds, we expect that in the high-density limit the
electron density is nearly uniform except at distances
very close to the ion. This suggests that the lowest-
order approximation to { which incorporates the boun-
dary condition at the origin, Eq.(1.2),has the form 1 +
cx,where ¢ >> 1. We therefore write ¢ in the form

Y(x) =1+ cx + f(x), (1.4)

and derive an equation for the correction function f. We
require that the constant ¢ be the slope of y at the ori-
gin, and introduce y = cx as the independent variable in-
stead of x. Hence, f satisfies the differential equation

dzf(y) [1+y + f(y)]3/2
= € y (1.5)
dy2 y1/2

where

€ =1/c3/2, (1.6)
The boundary condition aty = 0 is

d
f= Zl';\é =0, (1.7

while the boundary condition at the surface of the Wig-
ner ~Seitz sphere, Eq. (1. 2),becomes

af

yom—f(yo)zl, (1.8)

and determines the relation between ¢ and ¥o- The solu-
tion of Eq. 1.5, with the boundary condition Eg.(1.7),is
analytic near € = 0, Therefore,for small € we can solve
this equation by expanding f in a Taylor series in ¢,

7 () 2:@1 e f(y). (1.9)

Substituting Eq. (1.9) in Eq.(1.5) and equating powers
of €, we obtain equations for f, which depend only on Fom
for m <n. To illustrate this procedure, the first four
of these equations are given below:

d2f1 (1 +y)3/2

dy? = y1/2 y (1.10)
d%f, 3 (1+y)1/2

f== y (1.11)
dy? 2 yl/z
dzf, B i (1 +y)r/2 i Iz (1.12)
dy2 2 g1z 727 g y12(1 4172 g

Copyright © 1973 by the American Institute of Physics 637



538 Michael Nauenberg: High density expansions in the Thomas-Fermi approximation 538

a2, 3(+yt/z
dy? Ty yl/2 3

L8 I
8 y1/2(1 + y)1/2
1 73

16 y1/2(1 + y)3/2°

(1.13)

These equations are then integrated in sequence, satis-
fying the boundary conditions aty = 0,

dfn
=—=—=0.
Ja dy

(1.14)
Finally,the solutions are then substituted in Eq. (1. 8) to
determine the relations between € and y,. The integra-
tion of Eq.(1.10), which satisfies the boundary condition,
Eq.(1.14),is elementary and gives

3 3 In(z +1)
=2 (yiny —y) + 2 MEF D)
fr=g Wby —y) + 7 P
+iln<z+1>‘ 3 + 2
16 z+1/ 8(z+1) 4(z +1)

Jr_2_ z 1 z
3(22—1)2 6 (z2—1)3

(1.15)

where z = (1 + 1/y)1/2,

For an expansion up to fourth order in €, we require only
the asymptotic form of the solutions of Egs.(1.11)~(1.13)
for large y,and the boundary condition at the origin, Eq.
(1.14), will actually not enter. The reason for this is

that the boundary condition at the surface of the Wigner -
Seitz sphere, Eq.(1.8),implies that ey3 ~ 1. Therefore,
we need not calculate terms of f, for large y of order
smaller than y37-3, The integration is therefore ele-
mentary, and we obtain [including the asymptotic ex-
pansion of Eq.(1.15)]

fi=3y3+%y2+ 3yl
+y(E 2+ 3y +51nd + 5, (1.16)
fo= 810 y5 + % y4 + —;; y3lny + —11; y3(i—; + 31n2),
(1.17)
fs =y7/1440 + % y6, (1.18)
. =v9/31104, (1.19)

Substituting Eqgs.(1.16)~(1.18),evaluated aty =y, in
Eq.(1.8) gives an implicit relation between € and y,. It
is clear that f; and f, contribute terms which are logari-
thmic in y ;. After some algebra, we find the initial slope
¢ =1/€2/3'in terms of x:

32/3 9 37/3  32/3
=%, Bx, 25 g %o
X(Inxy ++1n4 —21n2 — 21n3 + 2&2),  (1.20)

which then determines the solution y as a function of the
physical parameter x;. In particular,at x = x, we
obtain

Xx3(Inx,—Ind — 5 In3 + 5550 . (1.21)

J. Math. Phys., Vol. 14, No. 4, April 1973

The first two terms in Eqs.(1.20) and (1.21) agree with
the result of March.4 However,his expansion method
assumed the existence of a power series expansion in
Xg,and therefore he encountered divergences in the
higher orders. From Eqs.(1.20) and (1.21), we then
obtain the high-density expansion for the total energy

E = (22e2/1)[$x3/2¢5/2(x ) + 2¢] of the electron gas,

2¢2 [35/8 10/3  35/3
g 2% [3 __9 _3 43

X, (3 Inx, + 5 Ind
! |sx3 10x, 175 63 o laIn¥o + 3

gtz ig;;f)] (1.22)
The first term in this expansion corresponds to the
kinetic energy of a uniform electron gas, while the se-
cond term is the Coulomb energy. The third term was
first obtained by Salpeter8 by applying the variational
properties of the energy integral that leads to the
Thomas~Fermi equation, and later on by Salpeter and
Zapolski® from a power series expansion in x,, but
their methods also lead to divergent results in higher
order. We have verified Eq. (1. 22) by comparing it
with the result of numerical integrations of the Thomas—
Fermi equation obtained by G. Villere.

The pressure P of the electron gas can be obtained di-
rectly from the energy £, Eq.(1.22),from the relation

= —dE/dv,where v = 471 3/3x3 is the volume of the
Wigner ~Seitz sphere, or,alternatively, by the relation
Py = %x3/245/2(xy),

35/3
- X
63 ©

2¢2 5/3
py = 22€ [13 __9

3 (5 xF  10x,

><<11nxO +1—ln4—lln3—-gln2 +M>:, (1.23)
8 4 12 4 72000

Finally, we note that a similar expansion procedure can
also be used to solve the Thomas-Fermi-Dirac? equa-
tion, which includes the electron exchange contribution.

2. THOMAS-FERMI SCREENING

The Thomas—Fermi approximation has also been ap-
plied10:11.12 tg obtain the screening of the Coulomb
field of an ion by an electron gas in a neutral plasma.
The effect of a uniform positive background of charge
with density #, modifies Eq. (1.1) into the form

d2¢ 1,(,3/2
dx2  x1/2

- X, (2-1)

where 1 = 4nl 3nO/Z. The dominant term of the solution
of Eq.(2.1) at high density is n2/3x, and it can readily
be seen that the remainder falls exponentially for large
values of x. Hence,we assume the form

Y(x) = n2/3x + E(x)e-ox, (2.2)

and find o = V3 71/6, while £ satisfies the equation

P8 20 % _ f(x,0), (2.3)
where
Flx,8) = (mz/sx + ie-ax)s/z _ nx) cox — a2t (2.4)
x1/2
The boundary conditions for Eq.(2.3) are
£(0) =1 and HmE(x) = &(w), (2.5)
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where £(w) is a function of 7 to be determined below,
Eq.(2.10). These conditions can be satisfied by con-
verting Eq.(2.3) into the nonlinear integral equation

50 =1+ [ Kix, x) f[x', £(x)], (2.6)

where the kernel K has the form

5(2‘2“"' —1)/2a, x' <x,

KT = 1 = eran/aatezar, x<x. @)

For ax >> 1,the function f has the asymptotic form

3 };:2 e-ox

Slong) =g S

(2.8)

Hence, we can solve Eq.(2.6) by successive iterations.
A useful starting function is § 4(x) = 1, which we sub-
stitute in the integrand of Eq.(2.6). For n >> 1,this
first iteration leads to a high-density approximation for
£(%). For xS 1/92/3 we obtain

E(x) 21— (x/4n%/3) [In(Gn) — 2 + 72 + 3In(v2 +1)]
+(2/3 {2 + DV/221/2 (322 +2—§) + 3(3

+zln[(z + 1)1/2 4 z1/2]} 2 p1/342 — 13, (2.9)
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where z = n2/3x, while for x > 1/52/3

() = E(@) = 1 — (1/8n)[EIn(3n) — § + T V2 + In(VZ + 1)].
2.10
These equations give the high-density nonlinear co(rrec-)
tions to the Debye ~Hiickel approximation, which corres-
ponds to setting §{(x) = 1. However, it should be remem-
bered that the Thomas—Fermi equation cannot be used
to obtain asymptotic screening for a degenerate elec-
tron gas,as was first pointed out by Friedel.13

IL. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927).

2E. Fermi, Z. Phys. 48, 73 (1928).

3For a detailed review, see N. H. March, Advan. Phys. 6, 1 (1957).
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9P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).

10N. F. Mott, Proc. Camb. Phil. Soc. B2, 281 (1936).

1tH. Fujiwara, J. Phys. Soc. Japan 339, 727 (1955).

12L. C. R. Alfred and N. H. March, Phil. Mag. 46, 759 (1955); Phys.
Rev. 103, 877 (1956).
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On Litvin’s lemma
P. H. Butler
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We produce a counterexample to a lemma given by D. B. Litvin on the decomposition of direct
products of irreducible representations [J. Math. Phys. 13, 1386 (1972)]. The error in his proof

is noted.

In a recent paper Litvin! claims to have proven the
following lemma,

Litvin: “The direct product of two type A (ortho-
gonal) or two type B (symplectic) irreducible repre-
sentations of an arbitrary decomposable unitary group
does not contain type B representations; the direct pro-
duct of a type A and a type B irreducible representation
does not contain type A irreducible representations.”

Litvin does not seem aware of Mal'cev's lemmas.?

Mal’cev: “The Kronecker product of two contra-
gredient representations is orthogonal. The Kronecker
product of two orthogonal or two symplectic represen-
tation is orthogonal, and the Kronecker product of an
orthogonal and a symplectic representation is symplec-
tic.” One needs to use his results on reducible repre-
sentations also. Dynkin3 quotes these as,“In order that
a reducible representation ¢ be symplectic (orthogonal)
it is necessary and sufficient that its decomposition
into irreducible components has the form

Q=0 Frrt oty FY FF Y+

where the representations ¢,, ¢,, * * * ¢, are symplectic
(or orthogonal, respectively) and the representations
Y, and ¥, ({ = 1,2,...,1) are contragredient to each
other.”

Note that these lemmas do not rule out the possibility

of orthogonal (or symplectic) representations occurring,
as long as they occur in pairs. (The proofs apply to
finite groups equally.)

In a recent study? of the properties of jm and j sym-
bols for an arbitrary (finite or compact) group, I obtain
Mal'cev result using techniques which were very simi-
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lar to Litvin's. In that work, the question arose as to
whether Litvin's result could be proved and if so was
there a stronger result concerning the occurrences of
type C (complex) representations. The application of a
little character theory of the unitary groups suggests
that complex representations (i.e., representation with
complex characters) can be separated into two classes,
‘“quasiorthogonal” or “quasisymplectic,” where these
terms are added into the statement of Litvin, King and I
usedS explicit Kronecker product formulas (in terms of
S-functions) to show that this much stronger lemma
holds for all compact semisimple Lie groups. However
a finite group of order 16 fails the stronger condition.
Frame® then produced a group, 2I,(2) of order
212335213, which contradicts Litvin's lemma,

The error in Litvin's proof is the assumption [after
his Eq. (6)] that a certain unitary freedom exists. In
fact his “arbitrary” unitary matrix has a symmetry
imposed upon it by the reality of the characters, and
not conversely.”

Note: D. Litvin agrees with the conclusions of this
note,

'D. B. Litvin, J. Math. Phys. 13, 1386 (1972).

2A. J. Mal’cev, Am. Math. Soc. Transl. Ser. 1 9, 172 (1962), see Lemma
1, p. 194,

3E. B. Dynkin, Am. Math. Soc. Transl. Ser. 2 6, 245 (1957), see
Theorem 0.25, p. 361.

“P. H. Butler, “Wigner coefficients and n+/ symbols for chains of
groups”, preprint, 1972.

SP. H. Butler and R. C. King, Can J. Math. (to be published).

6]. 8. Frame, private communication, for details sce Ref. 4.

7J-R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584 (1965), see
Eq. (4.7).
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Spin zero couplings in the Veneziano model*
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The problem of the positivity of the residues in the simple Veneziano model is investigated.
Previous studies of this problem have concentrated on the residues of poles lying along specific
daughter trajectories, and hence needed to work only with polynomials of fixed low degree. A
technique is developed here which is applied to all the spin zero daughters in the model, and
which therefore deals with polynomials of arbitrarily high degree. It is found that the spin zero
residues are all positive if @y = 1/2, where a, is the intercept of the leading trajectory in the

model.

I. INTRODUCTION

A number of investigators, including the present author
in collaboration with W. A, Simmons, have looked into the
problem of the positivity of the residues in the Veneziano
model.1~5 This model® in its simplest form represents
a scattering amplitude in terms of ratios of gamma
functions in such a way that “partial fraction” expansions
of the amplitude may be interpreted in terms of s- and
t-channel (zero width) resonances. For such an inter-
pretation to be tenable, the residues of the poles which
appear in the partial fraction expansion should be all
positive; otherwise, the poles would have to be regarded
as arising from negative norm intermediate states
(ghosts). Finding a region of model parameters for
which all the residues are positive has proven to be a
very challenging mathematical problem. The relevant
parameters of the model are a, the intercept of the
leading trajectory, and a’p2 where a’ is the slope of the
trajectory, and u is the particle mass. In Ref. 5, a region
of these parameters is derived which ensures positivity
of the residues for poles lying on the first six trajec-
tories. The actual region is somewhat complicated in
shape, but it includes the simpler region

Fsay=1—4a’p2,

The poles in the Veneziano model lie along straight-line
trajectories in the J-m2 plane, as shown in Fig. 1, J
represents the angular momentum of the partial wave in
which the pole appears, and » is the invariant center-of-
mass energy. If we number the poles along a trajectory
by the integer K = 1,2, - - -, then the parent trajectory
has J = K, the first daughter trajectory hasJ = K — 1,
and so on. As shown in Ref. 5, the residue at each pole

AJ

FIG. 1.

Regge trajectories in the Veneziano model.
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is expressed in terms of the model parameters by a
polynomial which increases in degree as K — J increases.
In fact, except for easily handled common factors, the
residues of the nth daughter trajectory involve a poly-
nomial of degree # for z even and » — 1 for # odd. Thus,
work done so far has treated all the residues only on the
leading trajectories, where the polynomials involved are
of reasonably low degree. In this paper, we will look at
the residues along a line of constant J rather than con-
stant J — K; as a result, we will have to come to grips
with polynomials of arbitrarily high degree. The parti-
cular case dealt with here is J = 0, primarily because of
simplifications in the forms of the polynomials that
arise. However, studies of the high-K asymptotic limit
by Nambu and Frampton? indicate that the J = 0 residues
are among the most crucial ones in the sense of having
the values closest to violating positivity for a given set
of model parameters. Thus, the results presented here
lend considerable additional support to the already
widely accepted conjecture that there are some values of
the parameters for which all the residues are positive.

In Sec.II, we will derive equations for the boundaries of
the regions in which the spin zero residues are positive,
and discuss some properties of the polynomials which
define these boundaries. In Sec.III, we will see how the
boundary curves are formed, and discuss some aspects
of their shape and location. In Sec.IV, a bound is derived
which limits the locations of the boundary curves suffic-
iently to give a region of positivity for all J = 0 residues.
Numerical calculations for the finite number of cases
not encompassed by the bound then show that the spin
zero residues are positive for a, = 5.

1. EQUATIONS FOR THE ,BOU;NDARY OF THE
POSITIVITY REGIQN-"

Following the notation and definitions of Ref. 5, we intro-
duce variables a, and b, defined by

ag=a, +(K—1)/2, by=0b,—(K—1)/2,

where a, and b, are related to the model parameters
through the equations

a; =— 3a, + 4a’p2 — 1),
b, = 3a, + 4a’'p2 — 1),

We will also make frequent reference to the function
T (%) = x(x + 1)(x + 2)- -+ (x + K — 1).

As shown in Ref. 5, the residue of the Kth pole in the
J = 0 partial wave is given by

[&/2] ag2m
Cllag,by) = ijg mBé(-zm(bx), (1)
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where [x] means the largest integer contained in x, and

1 ar Ty (x). (2)

Bl = 4

To simplify the notation somewhat, we will henceforth

drop the subscript K on the variables e, and b,. Then,
combining Egs. (1) and (2), we obtain
0 2m d2m
chla,b)= 32 —2 Ty (b). (3)

m=0 (_2m + 1)‘ db 2m
Let us now introduce the polynomial (of degree K + 1)
X
L(x) = [ T(»)dy. (4)

Consider a Taylor series expansion of I, (4 + a) around
the point x = b; since I is a polynomial of degree K + 1,
the Taylor series will be a finite sum:

K+1

Z)a"

(b +a) = - Tx(0). &)

We can similarly expand /{6 — a); in fact, we can simply
replace a by — a in Eq. (5) to obtain:

K+1

Iy — @) = 2 (= Drer - d}: 1,(b). (6)

If we take the difference of Egs.(5) and (6), all the even
n terms in the two sums will cancel. The result will
contain just the odd terms, and, letting n = 2m + 1 for
these, we have

I.(b+ a) — I,(b— a)
[K/R) 2

d2m+1
m=0 (2m + 1)! Ix(®). ™

a2m+1
dp2m+1 K

But, from the definition of 7, given in Eq. (4), it is clear
that

Ty (b).

By taking account of this relation, a comparison of Egs.
(3) and (7) gives

Cfa,b) =

The boundaries separating positive residues from nega-
tive residues are determined by C§(a,b) = 0. From Eq.
(8), these boundaries are given by

(1/2a)[ I, (b + a) — I, (b — a)]. (8)

Iy(b + a) = I (b — a), (9)
except possibly at @ = 0. Letting a approach zero in Eq.
(8), we see that

CE(0,b) = T (b) = b(b + 1)(b + 2):+- (b + K —1).

Thus theé boundaries of regions of positivity intersect the
line a = 0 at the points 6 = 0,— 1,— 2,...,and — K + 1.
In terms of the variables a, and b, this means that the
boundaries for a given K 1ntersect the line a; =
— (K —1)/2 at the points b, = — (K — 1)/2,— (K — 2)/2,
L (K—2)/2,(K — 1)/2. Th1s result follows, of course,
also from settmg a = 0 in Eq.(1).

To make full use of Eq.(9), we will need to investigate
in some detail the properties of the polynomials I, (x).
We will first derive some symmetry properties. Con-
sider
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Ty(—x—K+ 1)
=(—x—K+1)}{—x—K+ 2)-+(—x— 1){— x)
=(— DEx(x + 1)-++(x + K — 1) = (— 1)ETy(x).
If we now investigate
-x-K+1
I—x—K+1)= [ " Ty(y)dy,
the change of variables 2 = —y — K + 1 gives
_K+1
L(—x—K+1)= f TK(—z—K+ 1)dz
= (- 1)Kf Ty (2)dz
= (— DE[I(— K + 1) — I (x)].
Thus, multiplying both sides by (— 1)¥, we find
Lx)+ (—VEL(—x— K+ 1) = I(— K+ 1). (10)

Consider first the case where K is even, K = 2k. Then
Lyx) + Ly(—x— 2k + 1) = L,,(— 2k + 1),

and putting x = — 2 + 1/2 gives
L=k + 1/2) = 1/2L, (— 2k + 1),

Our discussion of the properties of /,(x) for K even will
be simplified if we work with a function shifted to make

use of the symmetry inherent in the above relationships.
So, let us define

A x) = L,(x —k+ 1/2) — L,(— k + 1/2). (11)

Then the implication of Eq.(10) for the function A4, (x) is
simply that it is an odd function of x.

In the case that K is odd, K = 2k + 1, Eq.(10) becomes

Ly 1 (%) — Ly 1 (— % — 2k) = L, (— 2k).

If we substitute x = 0 into this, we see that

Ly (— 2R) = 1/212k+1(0) =0,
and so

x — 2k).

Lyp(®) = Ly o (—

This result may be summarized by noting that the func-
tion

Bk(x) = 2k+1(x - k) - 2k+1(— k) (12)
is an even function of x.

The functions A,(x) and B,(x) should have maxima and
minima at the zeroes of their derivatives. In particular,
extreme points of A,(x) occur where

Tpulx —k +1/2) = 0;
ie,,at

x=2x1/223/2,...,%(2k — 1)/2,
Similarly, B, (x) will have maxima and minima at
x=0,x1,+2,...,k.

It will be important in our later discussion of the way
the boundary curves are formed to have some estimates
of the relative values of the functions A,(x) and B,(x) at
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their maxima and minima. To make these estimates, we
start with the following simple relation:
Tu(x—1)=(@x—x(x+1)-+(x + K—2)
= [(x — 1)/(x + K — 1)]T(x).

We write this as

Tyx) = —rTylx — 1),
where

v =[K/(1—x)]— L.
Note that for

1—3K<x<1,

we have ¥ = 1. Thus, when we shift from a value x in the
interval specified above to a value increased by 1, the
absolute value of 7, increases (or at least does not
decrease) while the sign changes. We can sharpen this
statement as follows. Suppose we have

—nsxs—n+t+l,
where

0O<=n= 3K 1.
Then we find

(K—n—1)/(n+ 1) <7v s (K— n)/n.
Thus, if T, (x) is positive, we have the inequality
—[(K—=n—1)/(n+ 1)]T(x — 1) < T\ (x)

< — [(K — n)/n]T(x — 1), (13)

for x in the specified interval. If T, (x) is negative, the
inequality is reversed.

Now we can apply this result to the function A (x). From
the definition of Eq.(11), we have
-k+]
A0/ = [, Tu()ay,
and

a,3/2=f"

+2
k+1/2

-k+2
Tou(9)dy = A,(1/2) + [ | “Tou(9)dy.
Now T,, may be either positive or negative for its argu-
ment between — 2 and — £ + 1;for £ odd it will be nega-
tive, and for % even, positive. For the sake of discussion,
let us consider the case of 2 odd; as an example, see the
graph of A;(x) given in Fig. 2. If T,, is negative in the

3 A

+ T —— X
v |

FIG.2. The function A;(x).
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interval between — % and — % + 1, then clearly A,(1 /2)
will be negative. Furthermore, 7;,, will be positive for
its argument between — 2 + 1 and — 2 + 2, and so we
may apply the inequality (13), taking # to be # — 1, to the
last integral in the expression for A,(3/2). We find

-k+2
A (3/2)= A (1/2) — [ | Ty — Dy

k+1
~k+2

=A,(1/2) — [ | Tp(2)dz,
where we have put 2 =y — 1. Using the fact that
Top(x —k + 1/2) = T,,(— x — k + 1/2), this last integral
is

~k+1
2]_“1,2 Ty,(2)dz = 24,(1/2).

Thus

A,(3/2)= — A,(1/2). (14)

We started from the assumption that 2 was odd, and

hence that A (1/2) was negative. We have shown that

A (3/2) is positive, and exceeds |A (1/2)|. We can also

apply the other half of the inequality (13) to show that
A, (3/2)=—[(k+ 1)/(k — 1)]A,(1/2). (15)

The inequalities (14) and (15) are both just reversed if 2

is even and A,(1/2) is positive. We now wish to show
that

— 7, (R, P)A,((20 — 1)/2) = A, ((2p + 1)/2)
= — 7,k P)AL((20 — 1)/2)
is generally true [provided p is an integer such that the

arguments of A, in Eq. (16) are at maxima or minima of
the function] and that

(16)

rl(k’p) = 1’ Tz(k,p) = (k + 3p)/(k _p)7
if A,((2p + 1)/2)= 0

Vz(k,p) = 1’ Tl(k’p) = (k + 3p)/(k '—p)!
if A,((2p + 1)/2) = 0.

amn)

We will prove this by induction, first noting that Eqs.
(14) and (15) are compatible with Egs. (16) and (17), with
p = 1. Now we assume that Egs.(16) and (17) are true
for a given value of p, and will show that they hold for p.
replaced by p + 1, We have that

2p+ 3

~k+p+2
2 )= f_ Ty, (v)dy

k+1/2

—A, (21’; 1> +

We will assume that A,((2p + 1)/2) is positive. Applying
Eq. (13), with the inequality reversed, we obtain

2 + 3 % + 1 B+ p\ krp2
Ak<1’2 )sAk(i’z >_<k—i>f'k””1 T,,(y — Ddy

T <k - p)A”<2p2+ 1) * <: ii) A <21>2— 1>'

(18)

Ayl

—k+p+2
j;k+p+1 Top(y)ay.

Now note that Eq. (16) implies

A, (21’ 2_—1> =4, (gflz“L—l-)/rz(k, ).
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Inserting this in Eq.(18), we see that

n(®5Y=— [(2)
2 \e—1p
+ (liii{> __1._] A, <§21_1_> (19)
k—p/ vy(k, D) 2
On comparison with Eq.(16), we can define

ylk,p + 1) :<k z_pp> ¥ <:j1f>fz(’:’1’)-

Now, by hypothesis

7ok, p) = (k + 3p)/(k — P),
SO

- 21>> <k+p>
Ep+ )= yy( TP
valksp + 1) (k—p +k+3p

><2p >+<k+p>=1,
R+ 3p/ - \k+3p
verifying the first inequality in Eq.(17) for p replaced by

p + 1, and choosing the case for A, negative, as follows
from Eq.(19).

If we apply the other inequality in Eq.(13), we also have

2p+3 2p + 1 k—p_1> ~k+pe2
4 =4 - — 1d
k< 2 ) k( 2 > (k +p+1 f—lz+p+]_ T2k(y )dy

=_2(kp+1 )Ak<2p+1>
—p—1 2

N (k +p+ 1>Ak<2p— 1>'
E—p—1 2
From Eq.(16),

Ak<3p2“—1) > A, <2p - 1)/7;(k,1>),

(20)

which, inserted into Eq. (20), leads us to define

o p+1 ) <k+p+1> 1
B,ap+1)=2 + .
S (k—p— 1 \k—p—Vr,kp)

Using the assumed inequality,

7k, p) =1,

verifying the second inequality in Eq. (17). Had we
assumed A,((2p + 1)/2) negative, the obvious modifica-
tions of the above argument verify the inequalities in
Eq. (17) for the case of A,((2p + 3)/2) positive.

The implications of these inequalities for the shape of
the curves A,(x) is now fairly simple to state. As x in-
creases from 0, alternate maxima and minima are en-
countered at half-odd-integer values of x up to H2%k — 1).
A,(x) is positive at the maxima and negative at the
minima, and the relative sizes of these are governed by
lA,((20 + 1)/2)| >14,((2p — 1)/2)], (21)
which follows from Eqs. (16) and (17). Thus, as we go
farther from x = 0 we find the peaks and valleys become
higher and deeper. Because of the fact that A, (x) is an
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odd function of x, the same thing holds true if we move
away from x = 0 in the negative direction. This property
will prove to be crucial for the determination of the
shapes of the boundary curves worked out in Sec.III.

The arguments we have developed here for the functions
A, (x), relevant when K is even, may be applied with
minor modifications to the functions B,(x). As defined,
B,(0) = 0 is a maximum or minimum itself. As we move
away from x = 0 in either the positive or negative direc-
tion, we encounter successive positive maxima and nega-
tive minima at integer values of x from — 2 to k. As is
the case with the functions A, (x), the peaks and valleys
become higher and deeper as we get farther from x = 0.

I1i. PROPERTIES OF THE BOUNDARY CURVES

According to the discussion of the last section, the
curves separating regions of positive residue from
regions of negative residue are determined by Eq.(9). In
terms of the variables e, and b, this can be rewritten

Ig(by + ay) = Ix(by —a; — K+ 1).

Let us consider the case of even K = 2k. Then we can
express the above as

Aoy +a, +k—1/2)=A,(b; —a;, — &+ 1/2),

Let us definex = b, + a, + k— 1/2;thenb, —a, — k +
1/2 = x — ¢, where ¢ = 2a, + 2k — 1. The equation is
now simply

A (x) = A,(x — o). (22)
If we plot A,(x) and A,(x — c) on the same graph as
functions of x, then the intersections of these two curves
will determine the solutions of Eq.(22). Thus, a fixed
value of a, fixes the amount ¢ by which the second curve
is shifted, and the values of x at the intersections of the
two curves determine values of b, which lie on the
boundary curves. These values correspond to intersec-
tions of the line a, = const. with the set of boundary
curves.

When ¢ = 0, Eq. (22) is trivially satisfied for all x. But
¢ = 0 implies ¢, = — # + 1/2, or a = 0, and so this
simply reflects the fact that we have found it convenient
to deal with the product of ¢ and the residue functions
C§(a, b) instead of the latter directly. If we consider ¢
small, it is clear that we will get intersections near the
maxima and minima of A,(x); see, as an illustration, Fig.
3. For,let x, be a point at which 4,(x) is 2 maximum or
minimum; then for x — x, small enough, we can write

Ay(x) = Ay (xg) + 3A"(x0)x — x9)2,

ignoring terms of higher order in the small quantity.

]
|
|
|
I
I

e |
LN
T

I

I

i

I

FIG.3. Intersections of y = Aa(x) (solid curve) and
¥ = As(x — ¢) (dashed curve) for small c.
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But then x = x, + 3¢ will give a solution of Eq.(22) to
the same order. As c approaches zero, the boundary
curves approach the points b, =+ 3,...,+ 3(2k — 1) on
the line a; = — &k + 1/2. These intersections were
already discussed in Sec.II.

Now we must investigate the behavior of the solutions of
Eq.(22) for arbitrary c. We will start by proving that all
intersections between y = A,(x) and the shifted curve

y = A,{x — c) originate in the fashion discussed in the
last paragraph;i.e., any x that solves Eq.(22) will move
smoothly to one of the extreme points of A, as ¢ appro-
aches zero. First of all, note that if x is a solution of
Eq.(22), then so is ¢ — x. For,

Ak(C - x) = ——Ak(x — C) = ~Ak(x) :Alz(_ x)
= A4,[(c —x)—c].

If we assume that c¢ is positive, then either x or ¢ — x
(or both) will be positive. Let us choose the largest of
these two solutions; assume it lies between the pth and
(p + 1)th extreme point to the right of the origin, and
call it Xy o The other solution we will callx_ , = ¢ — %

<ps . A »
So our assumed position for x, is

3(2p — 1)< x, < H2p + 1).

Also, since x_, < x,,we must have ¢ < 2x,. The shift ¢
given by this fimitmg value will move the dashed curve
in Fig. 3 so that the point on it corresponding to — x

will have the same horizontal position as the point at x,
on the unshifted curve. The point at — x, has only the
extreme points beginning with — $(2p — 1) to its right.
Since, in the general case, ¢ < 2xp, we may have shifted
fewer extreme points than this to the right of the point
%,, but we cannot have shifted more. Now consider what
happens as we let ¢ decrease so that the shifted curve
moves to the left. The point at x, will slide up and down
on the slope between 3(2p — 1) and 3(2p + 1) as the
peaks and valleys on the shifted curve move past, but it
will remain “trapped” on this slope until the approach of
the extreme point at $(2p — 1) on the shifted curve as ¢
approaches zero. This follows because none of the inter-
vening peaks or valleys are high enough or deep enough
to carry x, up or down to the extreme points on either
side of it.” The only extreme point for which A, has even
a large enough magnitude is that at — 3(2p — 1), and
here A, has the wrong sign. As c approaches zero, we
come into a configuration like that in Fig, 3, and even-
tually x, goes to 2(2p — 1). It is not hard to see that in
this same limit x_, becomes — 3(2p — 1).

Next we prove that for sufficiently large ¢ the points

x, and x_ » coincide. Reversing some of the arguments
a%ove, we can see that as ¢ is increased from zero, the
intersection at x, will move onto the slope between the
extreme points at 3(2p — 1) and $(2p + 1) and will be
“trapped” there as the smaller peaks and valleys on the
shifted curve move past. Eventually ¢ will become large
enough so that the intersection at %, on the unshifted

\ P

\ X_p M\
/‘\\ !
\ [
\ / |
Xg I
(a) o \J

FIG.4. Positions of intersections at %, and x_, just before they coin~
cide, (a) %, originates at a maximum, (b) x, originates at a minimum.
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curve will be with the extreme point on the shifted curve
at — $(2p — 1). That is,x, — ¢ = — 3(2p — 1). But then
X, = 3(2p — 1), so the infersection at x__ will have
moved to the extreme point just to the left of the slope
where %, has been “trapped”. The situation will now
look like one of the cases in Fig. 4, depending on whether
the pth extreme point was a maximum or minimum.
Clearly, in either case a small additional increase in c,
moving the dashed curve to the right, will cause the
points x, and x_, to coincide. Since Aplxy) =— Ak(x_p),
the points can only coincide at a zero of A,. Let us call
the root of A,(z), which lies between the pth and (p + 1)th
extreme point,zp. Then the points x, and x_, both be-
come 2, when ¢ = 2z,. Let us show now that two inter-
sections labeled by x, and x, cannot coincide unless ¢ =
—p. Consider first p and m ,qboth positive, with p = m,

and ¢ = —m. If for some value of ¢ we have Xy = Xy
then
X, =C— X% =C— X =Xp.

Suppose x,, > x,. Thenx_, > x, as well; but this cannot
be true, since x_, lies to the left of %, until the two coin-
cide, and after coincidence neither intersection exists.

If we have x, > x, , we get the same sort of contradiction.
If we take p and ¢, both positive, with p # ¢, it is clear
that we cannot have x, = x, for any value of ¢, since

these points are trapped on slopes between different
pairs of extreme points. But neither can we have x_ p=

%_4, since this condition implies X, = %

We are now in a position to describe the system of
curves determined by Eq.(22). Recall that
a, =3c—k+3

c

(M

b]_:x-—

The values of x determined by Eq. (22) for a fixed value
of ¢ determine the values of b, at which a line of con-
stant a, intersects the system of curves in the a,-b,
plane. When ¢ = 0, the line is a¢; = — k + 1/2, and the
intersections are at b, = 3,...,+ 3(2k — 1). As we
move the line @, = const. to the right of this, we increase
c,and eventually, when a, = 2, — k + 1/2, the curves
that are connected with the points b, = + 1/2 on the line
a,=—k+ 1/2 join together. This occurs when ¢ = 22 v
x = z,,and so b, = 0, The general pattern is clear: As
the line moves through the positions at a¢; =2, — % +
1/2, we find a joining of the curves which star%ed from

b, =% %(2p— 1) ath, = 0. Finally,whena, =z,—k +
1}2, where z, is the largest root of A,(z) = 0, the last
pair of curves joins, and this line is tangent to the outer-
most curve of the system. Using the fact that the system
of curves is symmetric about the line a; = — & + 1/2,
we find that they form a set of & nested closed curves,
intersecting the line b, = 0ata, +k—1/2=1%2,,...,
+ £,,and lying completely in the regiona, =z, — %2 +
1/2. An example of the system of boundary curves, for
K = 6, is shown in Fig. 5.

We have treated the case of even K at some length, and
much the same methods can be applied for odd K = 2k +
1. The boundary curves again form a system of 2 nested
closed curves intersecting the symmetry line a; = — %
atb; ==x1,...,+ k. For this case, however, we can
determine explicitly the intersections with the line b, =
0 as well. From Ref. 5, we see that C§(a, ) is propor-
tional to b; when K is odd. Hence it is appropriate to
replace Eq. (8) by

(1/6,)C&(a, b) = (1/2ab,)

X [Iglby + a;) ~ Ig(by —a; — K+ 1)].  (23)
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lbl

Y
N

FIG.5. The boundary curves for regions of positivity when K = 6,

Letting 6, approach zero, the right-hand side of Eq.(23)
becomes

(1/2a)[ T (ay) — Tx(— ay — K + 1)] = (1/a)Ty(a,).

Thus the boundary curves intersect the line b, = 0 at
a,=0,—1,...,,— K+ 1, The system of curves lies
entirely in the region a, = 0, and since positive a, is
already required to give positive residues on the leading
trajectory in the model, the spin zero residues with K
odd provide no new restriction.

IV. REGION OF POSITIVITY FOR ALL
J = 0 COUPLINGS

The results of the last section imply that the residue of
the K th pole in the J = 0 partial wave is positive if a,
exceeds some value. For K odd, this value is zero, and
for even K = 2k, it is aPpin = z, — & + 1/2. Since z, lies
to the right of the minimum of A, which occurs at 2 —
1/2,we see that apin > 0. If we could determine a
bound for z,, such as

2, =27, allk,

we would have a region of positivity valid for all K. It
would not be a very useful region, however, because of
the way a, is related to the model parameters o, and
a’'pZ, A more useful result can be obtained by recon-
sidering (only briefly!) the formation of the boundary
curves determined by Eq. (22). Let us write the latter in
the form

Ak(x) = Ak(y)-

The function A, (x) is large and negative for x sufficiently
small; it passes through zeroatx = — 2, <~k + 1/2,
and so the extreme point at x = — 2 + 1/2 must be a
maximum, and from the results of Sec.II it is the largest
maximum of A,. Now consider solving Eq.(24) as
follows. Choose a large value of x. Construct a vertical
line from this value on the x axis until it intersects the
curve y = A, (x), and then draw a horizontal line from
this intersection. If x is large enough that A, (x) >

A,(— & + 1/2), this horizontal line will have no other
intersection with the curve y = A,(x). Thus for this
value of x, the only solution of Eq.(24) is the trivial one
¥ = x. As we reduce x, the horizontal line constructed as
above will move down, until finally at some x = x, it will
touch the peak at — 2 + 1/2. This means the line x = %
is tangent to the outermost boundary curve determined

(24)

J. Math. Phys., Vol. 14, No. 4, April 1973

546

by Eq.(24) aty = — & + 1/2. The usefulness of this
result becomes evident when it is noted that lines of
constant x correspond to the lines a, + b, = const. in the
a,~b, plane, and that a; + b, = a4, Also,y = — k + 1/2
implies a; = b,. So we find that the boundary curves all
lie in the region a, = 2a,, where ¢, = b, is the point on
the outermost boundary where the tangent line discussed
above intersects it. Furthermore, since any a, on the
system of boundary curves must be less than z, — k& +
1/2, we have

ag= 2(z, —k+1/2) (25)
as a condition for positivity of the residue at the 2kth
pole.

We now want to prove that Qg = 1/2 is sufficient to
guarantee positivity for all K. We proceed first to show
that

Z2,—k+1/2<Z,,

where Z, goes to zero as k goes to infinity. Then we can
determine a value # such that Z, < 1/4 for all k> n, We
will then explicitly calculate the residue at the point

a, =b, =1/4 for the cases k = 1,2, ..., n and show
that it is not negative.

The polynomial A, (x) has zeroes at x = 0,+ z,,...,+ z,.
For all of these except + z,, we have some limits on
their positions, since they lie between extreme points of
A,(x). In particular,

2@~ =z,=32+1), p=12...,k

Since we are interested in z, — k + 1/2, it will be some-
what more convenient to work with the function

Flx)=A,(x + &+ 1/2).

Let us call its zeroes X, — x,,— X5,...,~ X,,, Where
Xg=2, —k+1/2, x,=—2, | +k—1/2,...,%5, =
2, +k—1/2,

We have the bounds
p—1=x, =p,

Furthermore, all the x, as defined are positive.

forp=1,2,...,2k — 1. (26)
Since F(x) is a polynomial, we can write it in the form
F(x) = Alx — xo)(x + %) =+ - (% + x5,).
The natural logarithm of this is
2k
InF(x) = InA + In(x — xy) + 25 In(x + EAR
p=1

Taking the derivative of this expression,

F'lx) 2k

o) = x—xg) 1 + pg}l (x + x,)L, 27

But F'(x) = T,,(x), and so F'(0) = 0. Putting x = 0 in Eq.
(27), we have

2k 2k~1
151 Z x_l_ (28)
p:

74
But the bounds in Eq. (26) imply 1/x, = 1/p, so we have
the further inequality

1. %0

X0 p=1 p
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Thus we have the desired bound

2k—11 -1
xo:zk~k+1/252k:<2—> .
p=1p

We would like to know how large a value of & is required
before Z, < 1/4. We can find this rather easily from the
bound

For example,

2k-1

> i <_2§) + 1n<£>,

p=1p 12 2
and the right-hand side is greater than 4 for 2 = 14 or
greater,

Thus, if we can show that C¥ is positive at a; = b, = 1/4
for K = 2,4, ...,28, we will have established the posi-
tivity of all spin zero residues for

/2= a, = 1—4a'p2.

Physically, this point corresponds to o = 1/2, and

a’p2 = 0, and it is well known that residue for K = 2
vanishes there. Hence the lower limit cannot be im-
proved, except by some function of a’y2. Wagner?2
reports computer calculations that indicate positivity of
all residues at the point in question for K up to 50. Our
own calculation of the relevant spin zero residues is
given in Table I. As expected, all are positive except the
K = 2 residue which vanishes.

TABLE 1. The residues for even K from 2 to 28. Value given is Cff
evaluated at oy = 1/2, a@'y? = 0, divided by I'(K).

K Residue
2 0
4 0. 010 47
6 0.011 22
8 0.010 82
10 0,010 24
12 0.009 67
14 0.009 14
16 0.008 68
18 0.008 26
20 0.007 89
22 0. 007 56
24 0.007 26
26 0.006 99
28 0.006 74

V. DISCUSSION AND CONCLUSIONS

The final result we have obtained is simple enough that
it hardly warrants any extended discussion, but the argu-
ment used to obtain it was sufficiently involved that it
might be worthwhile to summarize it here. The dis-
cussion began with a result set down in Ref. 5; namely,
that any given residue i$ positive in the first quadrant of
the a, —b, plane outside a region determined by the
vanishing of a polynomijal in @, and b,. In the caseJ = 0,
we found that this polynomial in two variables was pro-
portional to the difference of the values of a single poly-
nomial in one variable evaluated at two different points,
We investigated the properties of this latter polynomial
and then showed that those properties implied a rather
simple nature for the boundary curves; namely, that they
consist of a system of # nested closed curves, where &k =
[K/2], symmetric about the lines b, = 0 and a, =

— (K — 1)/2. For odd K, the outermost of these curves
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does not enter the first quadrant of the a,-b, plane; for
even K, it does so but is limited to a region determined
by a vertical tangent line through its intersection with
the horizontal (a,) axis, and a tangent line of the form
a; + b, = ay = const,, which touches the curve where
a, =b,. We were able to show that for K greater than
28, the region so determined lies entirely outside the
region a, = 1/2, and treated the remaining cases by
direct numerical evaluation of the residues.

It would be desirable to extend the sort of argument

used in this study to the case of general J, but there are
special simplifications for J = 0 which make it rather
easier to treat. In the following Appendix, some formulas
are given for the residue functions C# which indicate a
possible direction of approach to the general case. They
unfortunately also indicate that the problem is not just

a simple extension of the result obtained here.

APPENDIX

From Ref. 5, the formula for the residue function for
arbitrary K and J is

[k/2]

Cfla,b) = El Y @72 BE 5 om (8),
m=

(A1)

where the coefficients
yI = (J + 2m)l/27m (2] + 2m + 1)!!.

From Eq.(Al), making use of the relation in Eq.(2), we
can show that

i(ahzcj’il) = a2J+2_a_(a—JCjK) (A2)
da Gl
and

(@20 = @292 (0 ICf), (43)

A solution of these equations can be found in terms of
the function Ty (x) and repeated integrals of this function.
If we define the polynomials T so that

d
'&;T&((x) = ij_l(x),

with Tf(x) = Ty (x) = x(x + 1)...(x + K — 1), and such
that the lowest power of x in 7 is x¥+1 then

J

Cf(a,b) = Z%) %(i_;)_"’li(za)—n-l
X [Tnlil(b +a)— (— I)J_nTyﬁl(b . a)]. (A4)

This may be verified by direct substitution of Eq. (A4)
into Eqs. (A2) and (A3).
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The last two equations in Eq. (3.1) read n#-2 and
n?-1 instead of n#-1 and 7? respectively.

In the first equation in Eq. (3. 8) read

I‘(nj + *21>2"1"'(j")/2 instead of I‘(nj +‘2L 2"f*(j_l)/2> .

and in the second equation of (3. 8) the bracket [
should be in front of |T instead of N .

The second equation in (3. 9) should read f, y(Q})
instead of £}  (@}).

In Eq. (3.11) insert N, N, before integral sign.
In Egs. (4.4), (4.5), and (4. 6) read

F<n+p_

5 2 ——j) instead of TI'(z + 1 —j).

J. Math. Phys., Vol. 14, No. 4, April 1973

In Eq. (4. 7) read

1"<'n L 2) instead of T(n + 1)
and the last T function in the second line should
have +iv in its arguments instead of —v. In the

4F; function the first entry in the second row should
be —n — (p — 4)/ 2 instead of —n.

The superscript on the sum 2 in Eq. (4. 9) should
ben — 1 instead of n = 1.

In line 11 p. 2075 read

|v|i+(p-2¥2  instead of |v|i+¢r-3V2,
In line 13 p. 2075 read
|p|#+(p-3¥2  jinstead of |v|#+p-3,
Copyright © 1973 by the American Institute of Physics 548
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